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Abstract: 

This doctoral thesis extensively investigates the principles, calculations, experiments, 

and simulations related to the distortion spectrum and surface-enhanced spectroscopy 

within the framework of attenuated total reflection Fourier transform infrared 

spectroscopy (ATR-FTIR). The research encompasses four main aspects: 

1. Based on Maxwell's equations, an in-depth exploration is conducted into the origins 

of spectral distortion with computations utilizing Snell's law. The combination of the 

established model with Fresnel’s equation yields simulation outcomes that align with 

the experimental spectral data. Correction of the distortion spectrum is realized through 

the application of the Kramers-Kronig (KK) transform and an algorithm resembling the 

Fourier transform (FT). The subsequent analysis challenges conventional 

understanding by revealing the blue shift associated with the degree of spectral 

distortion. 

2. The study systematically introduces the transition from Fourier Transform (FT) 

methodologies to contemporary deep learning algorithms, particularly neural networks. 

Recognizing the intrinsic complexity of conventional correction methods, the 

investigation performs the classification and correction of distorted spectra using 

artificial neural network algorithms. Comparative assessments with traditional methods 

indicate that long short-term memory (LSTM) and Transformer models exhibit 

accelerated processing speeds and heightened batch correction capabilities. 

3. Theoretical calculations for surface plasmon generation, accounting for the thickness 

of the thin layer, were conducted. The surface enhancement spectrum of Pd 

nanoparticles is demonstrated through the integration of theoretical calculations with 

experiments. 

4. The thesis expounds on the principles of two-dimensional Fourier transform (2D FT) 

and provides an in-depth analysis of the classification and fundamental principles of 

two-dimensional infrared spectroscopy (2D IR). As a technique rooted in third-order 

nonlinear optical phenomena, 2D IR spectroscopy exhibits distortion and surface-

enhanced spectroscopy characteristics similar to those observed in one-dimensional 

(1D) spectroscopy, particularly near the critical angle. Furthermore, due to the unique 

principles of 2D IR, it also demonstrates enhanced specificity at the Brewster angle. 
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This thesis offers a comprehensive discussion and comparison of the similarities and 

differences between 1D and 2D surface-enhanced spectroscopy.  
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Zusammenfassung: 

Diese Doktorarbeit untersucht umfassend die Prinzipien, Berechnungen, Experimente 

und Simulationen im Zusammenhang mit dem Verzerrungsspektrum und der 

oberflächenverstärkten Spektroskopie im Rahmen der abgeschwächten Totalreflexions-

Fourier-Transformations-Infrarotspektroskopie (ATR-FTIR). Die Forschung umfasst 

vier Hauptaspekte: 

1. Basierend auf den Maxwellschen Gleichungen wird eine tiefgehende Untersuchung 

der Ursprünge der spektralen Verzerrung durchgeführt, wobei Berechnungen mit dem 

Snell'schen Gesetz genutzt werden. Die Kombination des etablierten Modells mit der 

Fresnel-Gleichung liefert Simulationsergebnisse, die mit den experimentellen 

Spektraldaten übereinstimmen. Die Korrektur des Verzerrungsspektrums wird durch 

die Anwendung der Kramers-Kronig (KK) Transformation und eines Algorithmus, der 

der Fourier-Transformation (FT) ähnelt, realisiert. Die anschließende Analyse stellt das 

konventionelle Verständnis in Frage, indem sie die Blauverschiebung im 

Zusammenhang mit dem Grad der spektralen Verzerrung aufzeigt. 

2. Die Studie führt systematisch den Übergang von Fourier-Transformations-Methoden 

(FT) zu Deep-Learning-Algorithmen, insbesondere neuronalen Netzwerken, ein. 

Angesichts der intrinsischen Komplexität herkömmlicher Korrekturmethoden wird die 

Klassifizierung und Korrektur verzerrter Spektren mit Hilfe von Algorithmen 

künstlicher neuronaler Netzwerke durchgeführt. Vergleichende Bewertungen mit 

traditionellen Methoden zeigen, dass Long Short-Term Memory (LSTM) und 

Transformer-Modelle eine schnellere Verarbeitungsgeschwindigkeit und gesteigerte 

Batch-Korrekturfähigkeiten aufweisen. 

3. Theoretische Berechnungen zur Erzeugung von Oberflächenplasmonen, die die 

Dicke der dünnen Schicht berücksichtigen, wurden durchgeführt. Das 

oberflächenverstärkte Spektrum von Pd-Nanopartikeln wird durch die Integration 

theoretischer Berechnungen mit Experimenten demonstriert. 

4. Die Arbeit erläutert die Prinzipien der zweidimensionalen Fourier-Transformation 

(2D FT) und bietet eine ausführliche Analyse der Klassifikation und grundlegenden 

Prinzipien der zweidimensionalen Infrarotspektroskopie (2D IR). Als eine auf dritter 
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Ordnung nichtlinearer optischer Phänomene basierende Technik zeigt die 2D IR-

Spektroskopie Verzerrungen und Merkmale der oberflächenverstärkten Spektroskopie, 

die denen der eindimensionalen (1D) Spektroskopie ähneln, insbesondere in der Nähe 

des kritischen Winkels. Darüber hinaus demonstriert die 2D IR aufgrund ihrer 

einzigartigen Prinzipien auch eine erhöhte Spezifität am Brewster-Winkel. Diese 

Dissertation bietet eine umfassende Diskussion und einen Vergleich der 

Gemeinsamkeiten und Unterschiede zwischen der 1D- und der 2D-

oberflächenverstärkten Spektroskopie. 
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Introduction: 
Attenuated total reflection (ATR)1 techniques are widely used in spectroscopy due 

to their experimental simplicity and non-destructive nature2-8. In ATR, the radiation is 

propagating in a material with high refractive index, often referred to as the internal 

reflection element (IRE), and undergoes total internal reflection at the IRE surface. This 

surface is in contact with the sample so that the evanescent field9 of the radiation can 

interact with the sample. In ATR absorption methods, the internally reflected radiation 

carries information about the absorption spectrum of the sample.  

The most widely used range for the ATR technique is the mid-infrared spectral 

range10, i.e. from ~4000 to ~200 cm-1. The aim is usually to either carry out structural 

analysis from assigning the peaks to vibrational modes or to perform quantitative 

measurements, e.g. as a means of process analytical technology (PAT). However, there 

is a number of issues arising from complex, chemically, and physically inhomogeneous 

samples and extracting reliable information from their spectra. This is particularly true 

for strongly absorbing samples and media with a high refractive index such as carbon 

black11, 12, coal13, graphite, graphene, rubber14, 15, metal16-18, metal oxide19, etc20. When 

such samples are analyzed, the ATR spectrum is always affected by significant 

distortions21-24. As those distortions can originate from a multitude of physical and 

chemical phenomena, it is vitally important to understand the underlying mechanisms 

and to develop methods for their correction. Most of these issues are related to the fact 

that the refractive index is so high that the critical angle is higher than the one used in 

the ATR accessory; hence, the total internal reflection is affected. 

In the present work, we focus on the analysis of mixtures of particles mixed with 

a solvent as suggested for the recently developed solvent infrared spectroscopy (SIRS) 

approach, which can be used to study the surface chemistry of nanomaterials25. Such 

systems are particularly interesting as they seem to be simple at first glance because the 

IRE-solvent interface appears to be dominating the evanescent field.  

However, we will show that the reality is more complicated. For this purpose,  
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this doctoral thesis conducts a comprehensive exploration of distortion spectroscopy 

and surface-enhanced spectroscopy within the framework of attenuated total reflection 

Fourier transform infrared spectroscopy (ATR-FTIR)1, 10. 

We always have questions first, then answers. But in the process of searching for 

answers, new questions will continue to arise, and new areas will continue to be 

expanded. This is how I do research and also why research is so fascinating. But when 

we find the answer, we have to start from some very basic and complicated theories to 

try to explain everything fundamentally. This is what this doctoral thesis demonstrates. 

Chapter 1 first introduces wave optics based on Maxwell's equations. Then the chapter 

based on Maxwell's equations, Snell's law, and Fresnel's law, and explored the causes 

of spectral distortion and which parts caused the distortion. Next a model for mixtures 

comprising of a liquid and a solid is established. The effects of the distortion as well as 

potential misinterpretation of the data are discussed. Proof-of-concept experiments with 

mixtures of carbonaceous materials and toluene confirm the theoretically predicted 

observations.  

Chapter 2 starts with an introduction to phase sensitive detection (PSD), Fourier 

transform (FT), Hilbert transform including Kramers-Kronig (KK) transform, and 

Lorenz-Drude model. Followed by the simulation and correction of the distorted ATR 

spectrum based on the KK transform, Inverse fast Fourier transform (IFFT), fast Fourier 

transform (FFT). Furthermore, we enhanced the original correction method to address 

these variations with phase delays varying across different wavenumbers. This 

improvement allowed us to obtain the corrected spectrum for the entire distorted 

spectrum in a single step, ensuring a more accurate and comprehensive correction.  

According to the analysis of the result, the right trends of the peak shift, which is blue 

shift rather than red shift in distorted original spectrum, are achieved. 

Chapter 3 initiates with a systematic introduction from traditional transform methods 

to deep learning algorithms, including short-time Fourier transform (STFT), wavelet 

transform, convolutional neural network (CNN), recurrent neural network (RNN) 

including long short-term memory (LSTM), attention mechanism including 

Transformer. Followed by the simulation and correction of the distorted ATR spectrum 

based on LSTM and Transformer. In this work, several steps were taken: generating 

artificially distorted spectra using IFFT and FFT; subsequently, training models using 
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LSTM and Transformer as learning methods; consequently, distinguishing between 

distorted and normal experimental spectra; eventually, correcting the distorted spectra. 

The deep learning algorithms in this paper provide valuable guidance to researchers 

who encounter distorted spectra in experiments. This holds significant potential for 

differentiating and correcting various types of spectra, and even images. 

Chapter 4 explains the principle of surface enhanced spectroscopy based on Maxwell’s 

equations from two aspects: thin-layer theory and Surface plasmon polaritons (SPPs). 

Secondly, considering the influence of d on the basis of Otto and Kretschmann 

configuration, detailed steps are given for the calculation and simulation of surface 

plasmons in ATR, which is the basis of ATR surface enhanced spectroscopy in this 

thesis. Followed by the experiment of surface-enhanced spectroscopy of Rhodamine-

6G based on ATR with Palladium (Pd) nanoparticles. 

Chapter 5 introduces the 2D FT as a foundational topic before moving on to introduce 

two key approaches to 2D infrared spectra. After that ultrafast spectroscopy uncovered 

distorted and surface-enhanced spectra in 2D infrared spectra, similar to 1D infrared 

spectra. This chapter investigates the mechanisms by which third-order nonlinear 

spectroscopy methods produce surface-enhanced spectra near Brewster's angle. This 

phenomenon contrasts with the critical angle enhancement observed in one-

dimensional infrared spectroscopy. Our research aims to provide a deeper 

understanding of these phenomena and their underlying principles, thereby enriching 

the field of two-dimensional infrared spectroscopy and advancing its applications in 

studying complex molecular interactions. 

Since the theories and methods involved in this thesis span physics, chemistry, 

spectroscopy, linear optics and nonlinear optics, signal processing, and artificial 

intelligence, the relationships between the various concepts and methods are quite 

complicated, a brief relationship diagram to show the relationship between each part 

can be seen in the Fig. 1.0 below. 
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Fig. 1.0 The relationship between the phenomena and principals involved in this 

doctoral thesis. 
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1. Theoretical calculation 

1.1 Maxwell’s Equations 

Maxwell's equations are composed of the following four formulas26-34. 

𝛻 × �⃗� = −
𝜕�⃗� 

𝜕𝑡
          Faraday's law    (1.1) 

           𝛻 × �⃗⃗� = 𝐽 +
𝜕�⃗⃗� 

𝜕𝑡
         Ampere's circuital law     (1.2) 

 ∇ · �⃗⃗� = 𝜌𝑣          Gauss's law  (1.3) 

                               ∇ · �⃗� = 0          Gauss's law for magnetic Field  (1.4) 

Faraday's law states that a changing magnetic field can generate an electric field. 

Ampere's circuit law states that conducting an electric current can create a magnetic 

field and that a changing electric field can create a magnetic field. 

Gauss's law means that an electric field is a source field, and a charge can generate an 

electric field. 

Gauss's law for magnetic field means that the magnetic field is a field without sources. 

All in all, Maxwell's equations explain the origins of electromagnetic fields31, 32. 

The physical meanings of the symbols are shown in the table 

List of Symbols. 

In which34, 

∇=
𝜕

𝜕𝑥
𝑖 +

𝜕

𝜕𝑦
𝑗 +

𝜕

𝜕𝑧
�⃗�          (1.5)   

 Fig. 1.1 Unit vector (𝑖 , 𝑗 , �⃗� ) on the 𝑥, 𝑦, 𝑧 axis. 

The three following equations make up the constitutive relations, which describe 

how fields interact with materials31-33. 

   �⃗⃗� = ε�⃗�    Electric response       (1.6) 

   �⃗� = μ�⃗⃗�    Magnetic response      (1.7) 

  𝐽 = 𝜎�⃗�    Ohm’s law             (1.8) 

In our discussion, ε , μ and 𝜎 are scalars. But in anisotropic media, they’re tensors. 

We’ll introduce them respectively. 

The permittivity ε is a measure of the electric polarizability of a dielectric. And it 

indicates how well a medium stores electric energy in capacitors. ε can be calculated 
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as33 

ε = ε0ε𝑟 = ε0(1 + 𝜒𝑒)        (1.9) 

ε0 = 8.8541878176 × 10−12𝐹/𝑚; ε𝑟 =
ε

ε0
= 1 + 𝜒𝑒. 

The electric displacement field �⃗⃗�   can be written as31, 32  

�⃗⃗� = ε0�⃗� + �⃗� = ε0�⃗�  +  ε0𝜒𝑒�⃗�         (1.10) 

ε0�⃗�   means the response of free space, �⃗�   means the response of material, which is 

defined as the polarization, �⃗� = ε0𝜒𝑒�⃗� . 

With regard to the response of material, we can divide them into linear and nonlinear. 

For linear response, which means31, 32  

�⃗� = ε0𝜒𝑒�⃗�         (1.11) 

�⃗⃗� = ε�⃗� = ε0ε𝑟�⃗� = ε0(1 + 𝜒𝑒)�⃗�         (1.12) 

For nonlinear response, which means35, 36 

�⃗� = ε0𝜒𝑒�⃗� + ε0𝜒𝑒
2�⃗� 2 + ε0𝜒𝑒

3�⃗� 3 + ε0𝜒𝑒
4�⃗� 4 + ⋯        (1.13) 

�⃗⃗� = ε0(1 + 𝜒𝑒)�⃗� + ε0𝜒𝑒
2�⃗� 2 + ε0𝜒𝑒

3�⃗� 3 + ε0𝜒𝑒
4�⃗� 4 + ⋯        (1.14) 

In this chapter, we only discuss the linear case. In chapter 5, we’ll discuss the nonlinear 

case. 

The permeability μ indicates how well a medium stores magnetic energy. 

μ = μ0μ𝑟 = μ0(1 + 𝜒𝑚)        (1.15) 

The electric response can be written as  

�⃗� = μ�⃗⃗� = μ0μ𝑟�⃗⃗� = μ0(1 + 𝜒𝑚)�⃗⃗�         (1.16) 

In which,  μ𝑟 usually as 1 where the magnetic susceptibility 𝜒𝑚 of most material is 

negligible. 

The refractive index �̂� can be calculated as 

�̂� = √μ𝑟ε𝑟 = √(1 + 𝜒𝑚)(1 + 𝜒𝑒) = √ε𝑟        (1.17) 

we will introduce more specific later in chapter 1.6. 

𝑐 =
1

√μ0ε0

         (1.18) 

The parameter σ, with units of 1/Ω · 𝑚 , characterizes how effectively a material 

conducts electricity. But it’s not important parameter in our case. 
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1.2 Wave Equation 

If only a dielectric is present, without any metallic material or free electrons, 

Maxwell's Equations can be expressed in the following simplified form26, 33, 34, 

37, 38: 

    𝛻 × �⃗� = −
𝜕�⃗� 

𝜕𝑡
          Faraday's law       (1.19) 

           𝛻 × �⃗⃗� =
𝜕�⃗⃗� 

𝜕𝑡
          Ampere's circuital law      (1.20) 

      ∇ · �⃗⃗� = 0          Gauss's law     (1.21) 

                                  ∇ · �⃗� = 0          Gauss's law for magnetic Field    (1.22) 

According to Gauss's law 

∇ · �⃗⃗� = 0        (1.23) 

And electric response equation 

�⃗⃗� = ε�⃗�         (1.24) 

To get 

∇ · ε�⃗� = ε(∇ · �⃗� ) = 0        (1.25) 

And ε is a constant, then we can get 

∇ · �⃗� = 0        (1.26) 

Add 𝛻 × on both sides of Faraday's law to get 

𝛻 × (𝛻 × �⃗� ) = −𝛻 ×
𝜕�⃗� 

𝜕𝑡
        (1.27) 

Because 

𝑎 × (�⃗� × 𝑐 ) = (𝑎 · 𝑐 ) · �⃗� − (𝑎 · �⃗� ) · 𝑐         (1.28) 

For the left side of Eqn. 1.27  

𝛻 × (𝛻 × �⃗� ) = 𝛻(𝛻 · �⃗� ) − (𝛻 · 𝛻) · �⃗� = −𝛻2�⃗�         (1.29) 

For the right side of Eqn. 1.27  

−𝛻 ×
𝜕�⃗� 

𝜕𝑡
= −

𝜕

𝜕𝑡
(𝛻 × �⃗� )        (1.30) 

Combine �⃗� = μ�⃗⃗� , 𝛻 × �⃗⃗� =
𝜕�⃗⃗� 

𝜕𝑡
 and �⃗⃗� = ε�⃗�  to get 

−𝛻 ×
𝜕�⃗� 

𝜕𝑡
= −μ

𝜕

𝜕𝑡
(𝛻 × �⃗⃗� ) = −μ

𝜕

𝜕𝑡
(
𝜕�⃗⃗� 

𝜕𝑡
) = −με

𝜕2�⃗� 

𝜕𝑡2
        (1.31) 

Combine Eqn. 1.29, Eqn. 1.30, and Eqn. 1. 31 to obtain 
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𝛻2�⃗� = με
𝜕2�⃗� 

𝜕𝑡2
        (1.32) 

Namely 

𝛻2�⃗� − με
𝜕2�⃗� 

𝜕𝑡2
= 0        (1.33) 

Which is the wave equation for the electric field30. 

Similarly, the wave equation of the magnetic field30 is 

𝛻2�⃗⃗� − με
𝜕2�⃗⃗� 

𝜕𝑥2
= 0        (1.34) 

For a monochromatic plane wave 

�⃗� (𝑟 , 𝑡) = �⃗� 0 · 𝑒𝑖(⍵𝑡−�⃗� ·𝑟 )        (1.35) 

𝜕�⃗� 

𝜕𝑡
= 𝑖⍵�⃗� 0 · 𝑒𝑖(⍵𝑡−�⃗� ·𝑟 ) = 𝑖⍵�⃗�         (1.36) 

𝜕2�⃗� 

𝜕𝑡2
= −⍵2�⃗� 0 · 𝑒𝑖(⍵𝑡−�⃗� ·𝑟 ) = −⍵2�⃗�         (1.37) 

Then the wave equation for the electric field can be written as 

𝛻2�⃗� + με⍵2�⃗� = 0        (1.38) 

Similarly, the wave equation of the magnetic field can also be written as 

𝛻2�⃗⃗� + με⍵2�⃗⃗� = 0        (1.39) 

And for the wave vector �⃗�  satisfy the following conditions 

�⃗� 2 = με⍵2        (1.40) 

𝛻2�⃗� + 𝑘2�⃗� = 0        (1.41) 

𝛻2�⃗⃗� + 𝑘2�⃗⃗� = 0        (1.42) 

Eqn. 1.41 and Eqn. 1.42 are the Helmholtz equations38. 
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1.3 Boundary Conditions 

When there is solely a dielectric present, meaning no metallic material or free electrons, 

Maxwell's Equations26, 39 can be reduced to the following simplified form34, 37: 

𝛻 × �⃗� = −
𝜕�⃗� 

𝜕𝑡
      Faraday's law       (1.43) 

𝛻 × �⃗⃗� =
𝜕�⃗⃗� 

𝜕𝑡
    Ampere's circuital law    (1.44) 

∇ · �⃗⃗� = 0           Gauss's law        (1.45) 

∇ · �⃗� = 0 Gauss's law for magnetic Field   (1.46) 

Take a rectangle with infinitely thin thickness and 

length 𝑙 at the interface of the material, according to 

the closed loop theorem                                  Fig. 1.2 Schematic diagram 

                 �⃗� 1𝑡𝑙 − �⃗� 2𝑡𝑙 = 0        (1.47)              of the closed loop theorem 

𝑡 here is a tangential component and 𝑛 is a normal component. 

Then 

�⃗� 1𝑡 = �⃗� 2𝑡        (1.48) 

Which means that the electric field is continuous in the tangential direction. From here 

we can derive the important Fresnel's law in chapter1.4. 

The following formulas can also be obtained in the same way. 

�⃗⃗� 1𝑡 = �⃗⃗� 2𝑡        (1.49) 

�⃗⃗� 1𝑛 = �⃗⃗� 2𝑛        (1.50) 

�⃗� 1𝑛 = 𝐵2𝑛        (1.51) 

For the monochromatic plane wave from Eqn.1.35, the electric field can be written as 

�⃗� (𝑟 , 𝑡) = �⃗� 0 · 𝑒𝑖(⍵𝑡−�⃗� ·𝑟 ) = �⃗� 0 · 𝑐𝑜𝑠(⍵𝑡 − �⃗� · 𝑟 )        (1.52) 

⍵ = 2𝜋𝑓        (1.53) 

⍵ =
2𝜋

𝑇
        (1.54) 

�⃗�  is the angular wave vector, indicating the direction of wave propagation. 

|�⃗� | =
2𝜋

𝜆
        (1.55) 

𝑣 =
𝑐

𝑛
=

⍵

�⃗� 
        (1.56) 

�⃗� = 𝑛
⍵

𝑐
 = 𝑛𝑘0

⃗⃗⃗⃗         (1.57) 
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For the vector 𝑋  the following formulas are all established 

𝛻 × 𝑋    = 𝑖�⃗� × 𝑋         (1.58) 

𝛻 · 𝑋    = 𝑖�⃗� · 𝑋         (1.59) 

𝜕𝑋 

𝜕𝑡
=  𝑖⍵𝑋         (1.60) 

𝜕2𝑋 

𝜕𝑡2
= −⍵2𝑋         (1.61) 

For Faraday's law 

𝛻 × �⃗�    = −
𝜕�⃗� 

𝜕𝑡
        (1.62) 

Substituting Eqn. 1.58 into the left side gives 

𝛻 × �⃗� = 𝑖�⃗� × �⃗�         (1.63) 

Substituting Eqn. 1.60 into the right side gives 

−
𝜕�⃗� 

𝜕𝑡
=  𝑖⍵�⃗�         (1.64) 

Which means 

�⃗� × �⃗� =  ⍵�⃗�         (1.65) 

Similarly, as for Ampere's circuital law 𝛻 × �⃗⃗� =
𝜕�⃗⃗� 

𝜕𝑡
,  

Eqn. 1.44 can be obtained 

�⃗� × �⃗⃗� = −⍵�⃗⃗�         (1.66) 

Combine �⃗� = μ�⃗⃗�  and �⃗⃗� = ε�⃗�  to get                      Fig. 1.3 �⃗� , �⃗⃗� , �⃗�  

�⃗� × �⃗� =  ⍵μ�⃗⃗�         (1.67) 

�⃗� × �⃗⃗� = −⍵ε�⃗�         (1.68) 

Simultaneously taking the modulo of Eqn. 1.67 and Eqn. 1.68 to obtain 

�⃗� · �⃗� =  ⍵μ�⃗⃗�         (1.69) 

�⃗� · �⃗⃗� = ⍵ε�⃗�         (1.70) 

Multiply the left and right sides of above two equations simultaneously to get 

�⃗� 2 = ⍵2με        (1.71) 

�⃗� = ⍵√με        (1.72) 

Similarly, 
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�⃗� 

�⃗⃗� 
= √

μ

ε
 = √

μ0

ε0
 ·

1

√ε𝑟 
        (1.73) 

�⃗⃗� 

�⃗� 
= √

ε

μ
 = √

ε0

μ0
 · √ε𝑟         (1.74) 

Meanwhile, for at the interface, the wave vector is continuous on the continuous 

component. 

𝑘1𝑧
⃗⃗⃗⃗⃗⃗ = 𝑘2𝑧

⃗⃗⃗⃗⃗⃗ = 𝑘3𝑧
⃗⃗⃗⃗⃗⃗         (1.75) 

𝑘1
⃗⃗⃗⃗  𝑠𝑖𝑛𝜃1 = 𝑘2

⃗⃗⃗⃗  𝑠𝑖𝑛𝜃2 = 𝑘3
⃗⃗⃗⃗  𝑠𝑖𝑛𝜃3        (1.76) 

And because 𝑘1
⃗⃗⃗⃗ = 𝑘3

⃗⃗⃗⃗ , then 

𝜃1 = 𝜃3        (1.77) 

𝑛1𝑘0
⃗⃗⃗⃗  𝑠𝑖𝑛𝜃1 = 𝑛2𝑘0

⃗⃗⃗⃗   𝑠𝑖𝑛𝜃2        (1.78) 

𝑛1 𝑠𝑖𝑛𝜃1 = 𝑛2  𝑠𝑖𝑛𝜃2        (1.79) 

Snell’s Law is obtained40. 
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1.4 Fresnel’s Law 

Transverse electric (TE) mode has magnetic field 

but no electric field in the direction of propagation31-

33. Light polarized perpendicular to the incidence plane 

(𝑥 − 𝑧) is 𝑠-light. Without considering time and only 

considering the direction of light wave propagation, 

monochromatic plane wave31, 32, 34 Eqn. 1.35 can be 

expressed as follows 

𝐸1
⃗⃗⃗⃗ = 𝐸10

⃗⃗ ⃗⃗ ⃗⃗ · 𝑒−𝑖�⃗� ·𝑟 = 𝐸10
⃗⃗ ⃗⃗ ⃗⃗ · 𝑒−𝑖(𝑘1𝑥·𝑥+𝑘1𝑧·𝑧)        (1.80) 

𝐸2
⃗⃗⃗⃗ = 𝐸20

⃗⃗ ⃗⃗ ⃗⃗ · 𝑒−𝑖�⃗� ·𝑟 = 𝐸20
⃗⃗ ⃗⃗ ⃗⃗ · 𝑒−𝑖(𝑘2𝑥·𝑥+𝑘2𝑧·𝑧)        (1.81)              Fig. 1.4 TE mode 

𝐸3
⃗⃗⃗⃗ = 𝐸30

⃗⃗ ⃗⃗ ⃗⃗ · 𝑒−𝑖�⃗� ·𝑟 = 𝐸30
⃗⃗ ⃗⃗ ⃗⃗ · 𝑒−𝑖(𝑘3𝑥·𝑥+𝑘3𝑧·𝑧)        (1.82)              

The tangential component is continuous near the boundary 

𝐸10
⃗⃗ ⃗⃗ ⃗⃗ + 𝐸20

⃗⃗ ⃗⃗ ⃗⃗ = 𝐸30
⃗⃗ ⃗⃗ ⃗⃗                 (1.83) 

𝐻1𝑧
⃗⃗ ⃗⃗ ⃗⃗  − 𝐻2𝑧

⃗⃗ ⃗⃗ ⃗⃗  = 𝐻3𝑧
⃗⃗ ⃗⃗ ⃗⃗                 (1.84) 

𝐻1𝑧
⃗⃗ ⃗⃗ ⃗⃗  = 𝐻1

⃗⃗ ⃗⃗ 𝑐𝑜𝑠𝜃1       (1.85) 

𝐻2𝑧
⃗⃗ ⃗⃗ ⃗⃗  = 𝐻2

⃗⃗ ⃗⃗  𝑐𝑜𝑠𝜃1       (1.86)   

𝐻3𝑧
⃗⃗ ⃗⃗ ⃗⃗  = 𝐻3

⃗⃗ ⃗⃗  𝑐𝑜𝑠𝜃2       (1.87) 

Eqn. 1.84 Turns to                                            Fig. 1.5 𝐻1
⃗⃗ ⃗⃗ , 𝐻1𝑥

⃗⃗ ⃗⃗ ⃗⃗  , 𝐻1𝑧
⃗⃗ ⃗⃗ ⃗⃗   

𝐻10
⃗⃗ ⃗⃗ ⃗⃗  𝑐𝑜𝑠𝜃1 − 𝐻20

⃗⃗ ⃗⃗ ⃗⃗  𝑐𝑜𝑠𝜃1 = 𝐻30
⃗⃗ ⃗⃗ ⃗⃗  𝑐𝑜𝑠𝜃2       (1.88) 

According to Eqn. 1.74 

�⃗⃗� = √
ε0

μ0
 · √ε𝑟 · �⃗� = √

ε0

μ0
 · 𝑛 · �⃗�        (1.89) 

Eqn. 1.88 can be changed as  

𝐸10
⃗⃗ ⃗⃗ ⃗⃗ 𝑛1𝑐𝑜𝑠𝜃1 − 𝐸20

⃗⃗ ⃗⃗ ⃗⃗ 𝑛1𝑐𝑜𝑠𝜃1 = 𝐸30
⃗⃗ ⃗⃗ ⃗⃗ 𝑛2𝑐𝑜𝑠𝜃2       (1.90) 
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Simultaneous equations (Eqn.1.83 and Eqn.1.90) to get1 

𝑟𝑇𝐸 =
𝐸20
⃗⃗ ⃗⃗ ⃗⃗ 

𝐸10
⃗⃗ ⃗⃗ ⃗⃗ 

=
𝑛1𝑐𝑜𝑠𝜃1 − 𝑛2𝑐𝑜𝑠𝜃2

𝑛1𝑐𝑜𝑠𝜃1 + 𝑛2𝑐𝑜𝑠𝜃2
       (1.91) 

𝑡𝑇𝐸 =
𝐸20
⃗⃗ ⃗⃗ ⃗⃗ 

𝐸10
⃗⃗ ⃗⃗ ⃗⃗ 

=
2𝑛1𝑐𝑜𝑠𝜃1

𝑛1𝑐𝑜𝑠𝜃1 + 𝑛2𝑐𝑜𝑠𝜃2
       (1.92) 

Transverse magnetic (TM) mode33, also called 𝑝 wave, 

has electric field but no magnetic field in the direction 

of propagation. Light propagated in TM mode is 𝑝-light.  

Fig. 1.6 TM mode 

Similarly, as for TM mode1 

𝑟𝑇𝑀 =
𝐸20
⃗⃗ ⃗⃗ ⃗⃗ 

𝐸10
⃗⃗ ⃗⃗ ⃗⃗ 

=
𝑛2𝑐𝑜𝑠𝜃1 − 𝑛1𝑐𝑜𝑠𝜃2

𝑛2𝑐𝑜𝑠𝜃1 − 𝑛1𝑐𝑜𝑠𝜃2
       (1.93) 

𝑡𝑇𝑀 =
𝐸20
⃗⃗ ⃗⃗ ⃗⃗ 

𝐸10
⃗⃗ ⃗⃗ ⃗⃗ 

=
2𝑛1𝑐𝑜𝑠𝜃1

𝑛1𝑐𝑜𝑠𝜃1 − 𝑛2𝑐𝑜𝑠𝜃2
       (1.94) 

Fresnel’s law is obtained. 

For light that has not been polarized, we usually think that the waves of TE and 

TM polarization states, namely 𝑠-light and 𝑝-light, each account for half1. 

𝑅𝑠 = |𝑟𝑠|
2 = |

𝑛1𝑐𝑜𝑠𝜃1−√𝑛2
2−𝑛1

2𝑠𝑖𝑛2𝜃1

𝑛1𝑐𝑜𝑠𝜃1+√𝑛2
2−𝑛1

2𝑠𝑖𝑛2𝜃1 

|

2

       (1.95)  

             𝑅𝑝 = |𝑟𝑝|
2
= |

𝑛2
2𝑐𝑜𝑠𝜃1−𝑛1√𝑛2

2−𝑛1
2𝑠𝑖𝑛2𝜃1

𝑛2
2𝑐𝑜𝑠𝜃1+𝑛1√𝑛2

2−𝑛1
2𝑠𝑖𝑛2𝜃1 

|

2

       (1.96)     

             𝑅 =
𝑅𝑠+𝑅𝑝

2
       (1.97)       

𝐴 = −𝑙𝑔𝑅       (1.98) 
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1.5 Total Internal Reflection and Evanescent Wave 

Fig. 1.7 The refraction and reflection of light at different angles of incidence. 

According to Snell's Law, when 𝑛1 > 𝑛2, at a certain incident angle the angle of 

refraction will be 90°. This angle of incidence is called the critical angle 𝜃𝑐 

𝜃𝑐 = 𝑠𝑖𝑛−1
𝑛2

𝑛1
        (1.99) 

If the angle of incidence exceeds the critical angle 𝜃𝑐, namely 𝜃1 > 𝜃𝑐, no more 

light will enter the medium 2. That is, total reflection, also called total internal reflection 

occurs. However, the electric field and the magnetic field cannot be discontinuous at 

the boundary. We consider that there is a field at the interface that decays rapidly in the 

vertical direction in the medium 2. Such wave that enters the medium 2 and decay 

rapidly is called evanescent waves. With the influence of absorption, when light falls 

within an absorption band of material in the medium 2's frequency range, its reflection 

is diminished, whereas at frequencies significantly distant from an absorption band, all 

incident light is reflected. This is the origin of ATR1, 10, 41. 

In additional, the amplitude of the evanescent wave decays to 1/𝑒 of its maximum 

value at a distance 𝑑𝑝 from the interface in attenuated total reflection1. This distance, 

called the penetration depth, is on the order of the wavelength of light. 
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𝑑𝑝 =
1

2𝜋𝑣√𝑛1
2𝑠𝑖𝑛2𝜃1−𝑛2

2
        (1.100) 

In attenuated total reflection, only the evanescent wave in the vertical direction 

enters the medium 2 and carries the information in the medium 2 back to the interface. 

Which is the basis of infrared absorption spectroscopy. 

In ATR FTIR1, the refractive index of the crystal 𝑛1 and the entry angle 𝜃1 are 

usually fixed. Which means that when the refractive index 𝑛2 of the substance to be 

measured reaches a certain value, the refraction angle will be 90°. And we can calculate 

the critical refractive index  

𝑛𝑐 = 𝑛1

𝑠𝑖𝑛 𝜃1

𝑠𝑖𝑛 𝜃2
= 𝑛1 𝑠𝑖𝑛 𝜃1         (1.101) 

Especially when 𝜃1 = 45°, 𝑛1 = 2.3778 (𝐷𝑖𝑎𝑚𝑜𝑛𝑑), 𝑛𝑐 = 1.6814; 

 𝑛1 = 2.3990 (ZnSe),  𝑛𝑐 = 1.6963. 

Once the refractive index of the substance to be measured is greater than the critical 

refractive index𝑛𝑐 , namely 𝑛2 > 𝑛𝑐 , it will no longer be internal reflection but 

refraction. And what is obtained is not the absorbance spectrum of the substance but 

the refraction spectrum. 

If the substance to be measured is a mixture, especially in the case of 

inhomogeneous refractive index, once the refractive index of one or several of them is 

greater than the critical refractive index 𝑛𝑐 , The mixed spectrum of absorption and 

refraction will be obtained. This is the reason for the distortion of the spectrogram, 

which is what we will focus on in the following papers. 
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1.6 Simulation of Distorted Spectrum 

1. Obtaining 𝒏(𝒗) and 𝒌(𝒗) from absorption or reflection 

In this section, we present the stepwise calculation procedure. For illustration 

purposes, we consider a mixture of carbon and toluene in order to show results based 

on real data.  

First, the values for 𝑛(𝑣)  and 𝑘(𝑣)  need to be obtained from an absorption or 

reflection spectrum.  

�̂�(𝑣) = 𝑛(𝑣) + 𝑖𝑘(𝑣)     (1.102) 

The relationship between the 𝑛(𝑣) and 𝑘(𝑣) is KK relationship in chapter 2.3. 

The 𝑘(𝑣) value can be derived in a straightforward manner from12  

𝐴(𝑣) =
4𝜋𝑑𝑣𝑘(𝑣)

ln10
       (1.103) 

𝑘(𝑣) =
ln10𝐴(𝑣)

4𝜋𝑑𝑣
       (1.104) 

where d is the path length. The path length as such does not exist in ATR, but an 

effective path length can be determined from the penetration depth dp. According to 

chapter 1.5 

𝑑𝑝 =
1

2𝜋𝑣√𝑛1
2𝑠𝑖𝑛2𝜃1 − 𝑛2

2
       (1.100) 

This parameter can be converted to an effective path length deff, which is the path length 

that would lead to the same absorption in a transmission experiment. The latter assumes 

low absorption, the same assumption deff is derived from. deff depends on dp and the 

polarization state of the light42, 43. In order to focus on the relevant math here, we 

simplify 

𝑑 = 2𝑑𝑝 =
1

𝜋𝑣√𝑛1
2𝑠𝑖𝑛2𝜃1 − 𝑛2

2
       (1.105) 

and obtain  

𝑘(𝑣) =
ln10𝐴(𝑣)

4
√𝑛1

2𝑠𝑖𝑛2𝜃1 − 𝑛(𝑣)2       (1.106) 
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Furthermore, 𝑘(𝑣) is connected with 𝑛(𝑣) through the Kramers-Kronig relationship. 

Here, the method to calculate 𝑛(𝑣) and 𝑘(𝑣) from 𝐴(𝑣) is according to Bertie and 

Satoru Nakashima44-46. It includes the following steps;  

Step 1: 𝑛∞ is calculated. (The refractive indices of toluene, 𝑛To, and carbon, 𝑛C, 

were taken from Myer et al.47 and Sorensen et al.48, respectively). The calculation of 

𝑛∞ uses a modified Sellmeier equation: 

𝑛(𝑣) = √a +
b

𝜆2 − 𝑐
       (1.107) 

where a, b, and c are constant numbers that are derived from fitting the equation to 

experimental data. It derives under the assumption of zero damping, i.e. without 

absorption. At this point, 𝑛(𝑣) is only used to calculate 𝑛∞. It must not be confused 

with the final calculation of the 𝑛(𝑣)  spectrum. The resulting best-fit equation was 

used to find the refractive index at the highest energy data point in the experimental 

spectra. For our model system toluene/carbon, we obtain 𝑛To∞ = 𝑛To(4000 𝑐𝑚−1)  =

1.4707 and 𝑛𝐶∞ = 𝑛𝐶(4000 𝑐𝑚−1)  = 1.79. 

Step 2: replace  𝑛 by 𝑛To∞ to calculate 𝑘(𝑣) by Eqn.1.106. If the refractive index 

𝑛∞ is too high (i.e. the square root in Eqn.1.106 becomes negative), then use Eqn. 1.108 

instead of Eqn. 1.106 to have a starting value for the iteration process: 

𝑘𝑗+1(𝑣) = 𝑘𝑗(𝑣)(1 + √𝑘𝑗(𝑣))       (1.108) 

in which 𝑘𝑗+1(𝑣) is the renew value from the old value 𝑘𝑗(𝑣). 

Step 3: the obtained 𝑘(𝑣) is used to calculate 𝑛(𝑣) by the Hilbert transform; 

Step 4: get the complex refractive index �̂�(𝑣). 

Step 5: treat �̂�(𝑣) as 𝑛2 and apply Fresnel's equations to get 𝐴(𝑣)𝑐𝑎𝑙. 

Step 6: calculate the new 𝑘𝑗+1(𝑣) by Eqn. 109 

𝑘𝑗+1(𝑣) = 𝑘𝑗(𝑣)
𝐴(𝑣)

𝐴(𝑣)𝑐𝑎𝑙
       (1.109) 

Repeat steps 3-5 until  

∑(𝐴(𝑣) − 𝐴(𝑣)𝑐𝑎𝑙)
2 < 10−4       (1.110) 

Then stop calculation and get 𝑛(𝑣) and 𝑘(𝑣).  
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In the low-wavenumber range, there may exist non-convergence using the above 

approach. This is attributed to strong absorption features and the real part of the 

refractive index  𝑛(𝑣) changing significantly. In this case, 𝑘(𝑣) from Myer et al.47 is 

applied as Eqn. 1.104 is directly used for the calculation, and the fitting method is 

changed from Eqs. 1.109 to 1.111, which we found empirically:  

𝑘𝑗+1(𝑣) = 𝑘𝑗(𝑣) +
𝐴(𝑣)

500𝐴(𝑣)𝑐𝑎𝑙
       (1.111) 

Finally, the two pieces of data are spliced to get the complete data set. The 

measured 𝑛(𝑣) and 𝑘(𝑣) composite refractive index is not used as the experimentally 

measured 𝑛To∞ = 𝑛To(8000 𝑐𝑚−1)  = 1.4749  is far outside the experimental interval 

studied in this chapter. 

Please refer to Fig. 1.8 for a basic flowchart. 

 

Fig. 1.8 Flowchart for calculating the complex refractive index of 𝑛(𝑣)   and 𝑘(𝑣) 

from the 𝐴(𝑣) spectrum. Note that �̂�(𝑣) = 𝑛(𝑣) + 𝑖𝑘(𝑣). 

As the refractive index of carbon is larger than the critical refractive index, the 

corresponding complex refractive index cannot be calculated in this way. Therefore, 

𝐴(𝑣) is used to replace 𝑘(𝑣) in order to calculate 𝑛(𝑣). We need to keep in mind that 

this contributes to the experimental error in the present work. Moreover, the complex 

refractive index is not calculated by ellipsometric or Surface Reflective Infrared (SRIR) 

measurements because these instruments cannot provide the same pressure as diamond 

ATR, which has a great influence on the experimental spectrum. 
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Fig.1.9 shows the 𝑛(𝑣) and 𝑘(𝑣) values of toluene calculated from A and 𝑛∞. 

The observed peak of absorbance is significantly red-shifted compared to 𝑘(𝑣), see Fig. 

1.9B. The 𝑘(𝑣) peak is consistent with the peak position in the transmission infrared 

spectrum. Although 𝑘(𝑣)  and the absorbance spectrum are similar, the positions of 

their peaks are not the same, so that the absorbance spectrum cannot be used directly. 

Generally, it must be noted that the measured peak positions in ATR-FTIR, 

Transmission-IR and reflection-IR spectra differ and that even for Ge as ATR crystal 

corrections are needed, although the deviations between 𝑘(𝑣)  and the absorbance 

spectrum are smaller in this case. 

 

Fig.1.9 Spectra of pure toluene and carbon. A) Overview 𝐴(𝑣), 𝑛(𝑣), 𝑘(𝑣) of 

toluene; B) Zoomed in low wavenumber region of toluene spectra; C) Overview 𝐴(𝑣), 

𝑛(𝑣) , 𝑘(𝑣)  of carbon with diamond absorption removed; D) 𝐴(𝑣) , 𝑛(𝑣) , 𝑘(𝑣)  of 

carbon with diamond absorption displayed. The dashed lines in B) indicate the apparent 

peak shift between the measured absorbance spectrum and the derived 𝑘(𝑣). 

The signatures around 1800-2200 cm-1 in Fig. 1.9D are caused by 2-phonon 

absorptions of the IRE material diamond49, 50. This absorption feature is of great 

significance for determining whether the distortion of the spectrum is caused from 

optical reasons, that is, the non-attenuated total reflection caused by the excessive 

refractive index of the sample. Strictly, the refractive index of diamond should be 

treated as a complex number, but then we would have to switch to a more complex 

optical model that treats the ATR crystal as an incoherent layer. However, since most 

samples have no absorption in this wavenumber region and diamond does not exhibit 
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absorption signatures elsewhere in the considered spectral range, we treat diamond as 

a non-absorbing medium here. This assumption helps to keep the complexity of the 

calculation relatively small. When simulating or correcting the spectrum, this part can 

be directly replaced with a straight line or corresponding curve to reduce the simulation 

error. 

2. Solid/liquid mixture infrared absorption spectrum model 

The 𝑛(𝑣) and 𝑘(𝑣) data obtained by the above method are mixed to model and 

calculate the absorption spectrum in different ways. Medium 2 represents the mixed 

substances. 

𝑛1 = 2.3778       (1.112) 

�̂�21(𝑣) = 𝑛21(𝑣) + 𝑖𝑘21(𝑣)       (1.113) 

�̂�22(𝑣) = 𝑛22(𝑣) + 𝑖𝑘22(𝑣)       (1.114) 

�̂�21(𝑣) is the complex refractive index of the liquid, like toluene in our experiment, 

𝑛21(𝑣) and 𝑘21(𝑣) are real and imaginary parts of �̂�21(𝑣).  �̂�22(𝑣) is the complex 

refractive index of the solid, with non-characteristic absorption but high refractive 

index, like it is the case for carbon black in the experiment. The refractive index of the 

mixture is then given by: 

�̂�2(𝑣) = �̂�21(𝑣) + 𝑥�̂�22(𝑣)  (𝑥 = 𝑥1, 𝑥2)        (1.115) 

For completeness, the following intuitive equation in liquid mixing is invalid in this 

situation: 

�̂�2(𝑣) = (1 − 𝑥)�̂�21(𝑣) + 𝑥�̂�22(𝑣)        (1.116) 

Liquid mixing does not necessarily follow the same trends as solid-liquid mixing. Eqn. 

1.115, developed to describe the characteristics of solid-liquid mixtures, might not be 

applicable to liquid-only mixtures. Solid-liquid mixing often involves complex 

interactions due to the disparate physical states and properties of the components, such 

as differences in refractive index, light scattering, and absorption behavior. These 

factors contribute to spectral distortions unique to solid-liquid mixtures. If x would be 

the mole or volume fraction Eqn.116 should be (approximately) valid, but since eqn. 

Eqn. 1.115 much better describes the experimental findings, x cannot be identified with 



21 

 

one or the other. Since carbon black is insoluble in water and other solvents, this may 

be the reason that Eqn.115 is favorable over Eqn.116.  

In the model, the complex refractive index is comprised of 

𝑛2(𝑣) = 𝑟𝑒𝑎𝑙(�̂�2(𝑣)) = 𝑛21(𝑣) + 𝑥1𝑛22(𝑣)        (1.117) 

𝑘2(𝑣) = 𝑖𝑚𝑎𝑔(�̂�2(𝑣)) = 𝑘21(𝑣) + 𝑥2𝑘22(𝑣)        (1.118) 

We substitute these equations into Fresnel's equations to yield the corresponding 

absorbance A, which can then be used to calculate the final simulated absorbance Ab 

(formally both Ab and A refer to absorbance, but Ab is simply used to distinguish the 

two in different situations): 

𝐴𝑏 = 𝐴 + 𝑦𝐴22 + 𝑎    (0≤y)        (1.119) 

where 𝐴22  corresponds to the absorbance of carbon black in the experiment. The 

obtained Ab spectrum is shown in Fig. 1.10. 

 

 

Fig. 1.10 Simulated Absorbance spectrum with varying 𝑥 and 𝑦 using eqn.1.115 in 

combination with Fresnel’s equations. The initial toluene spectrum is displayed at the 

bottom. The parameters x and y are increased in steps of 0.05 and 0.1, respectively. The 

left panel shows the overall spectrum and the right panel shows the enlarged region 

650-800 cm-1. Spectra are displayed with offset for clarity. 

Fig. 1.10 shows that with increasing 𝑥, that is, when the refractive index of the 

mixture sample gradually rises, the summit first redshifts and a concave part appears 
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on the left side of the peak (the concave part is difficult to observe in the beginning, so 

many researchers treat the spectrum as “normal” and regard the red-shifted peak as the 

result of intermolecular interactions). This is caused by the superposition of 𝑛(𝑣) of 

the complex refractive index. Then the concave part becomes more and more obvious, 

and the normal peak becomes weaker, until central symmetry is maintained. The same 

effect can be observed when the incident angle of the radiation is changed: when the 

incident angle changes from large to small approaching the critical angle, the red-shift 

can be seen and the left side of the peak begins to appear concave. This was 

demonstrated by Amma et al.51 However, for a given absorption transparent medium, 

the peak shape with one side recessed and the other protruding will continue to be 

maintained with decreasing incidence angle, just the degree of inclination will change. 

Please note that in mixtures with a high refractive index and non-selective 

absorption, it is different from the selective absorption peak of a transparent medium. 

After the central symmetry, the peak of the recessed part will be more obvious. The 

peak from here began to change from center symmetry to the negative peak. Until the 

original positive peak completely disappeared, the negative peak appeared. The entire 

absorption spectrum will be overall inverted and show a blue shift. This phenomenon 

can be verified from the mixed graph of pure carbon black and toluene shown in Fig. 

1.11. With increasing 𝑦, the baseline starts to tilt. In the low wavenumber regime, the 

baseline starts to rise, which is caused by the absorbance of carbon black, see Fig. 1.10 

and Fig. 1.12. However, when it reaches a certain level, the low wavenumber baseline 

starts to drop again while the high wavenumber baseline slowly rises until it finally 

becomes the inverted, blue-shifted peak of the original liquid absorption peak. Of 

course, the increase of 𝑥1, 𝑥2 and 𝑦 are almost synchronized, which shows that 𝑥1, 𝑥2 

and 𝑦 are not independent variables. 

To summarize the above, when the light is refracted by the optically dense medium 

into the optically thin medium, the distortion of the spectrum caused by the real part 

𝑛(𝑣) of the complex refractive index might already occur before the calculated critical 

angle is reached. In turn, this means that when the refractive index of the sample is less 
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than the critical refractive index, the spectrum is already affected, that is, the peaks are 

red-shifted, and correction is needed to get the accurate peak position. Note that what 

we call redshift here should precisely be called a pseudo redshift, which is caused by 

the light itself, not due to the intermolecular interaction or other physicochemical 

phenomena in the sample. In many cases, this observed red-shift is an actual blue shift 

in the unaffected/corrected spectrum. Therefore, the effect under study can lead to 

severe misinterpretations of datasets. 

When the mixture contains a substance with non-selective absorption and the 

refractive index of the sample is high enough, the infrared peaks of the sample can be 

observed anything from a positive to negative appearance and from red- to blue-shifted. 

This is particularly the case when the mixture contains carbonaceous substances such 

as carbon black, graphite, or graphene. These substances do not provide distinct 

absorption peaks in the infrared, so such peaks can be observed only when other organic 

substances are admixed. Unfortunately, carbon itself can cause the distortion of the 

baseline, the baseline will rise sharply at low wavenumbers, and because of its high 

reflectivity, the normal infrared spectrum is almost invisible when the content is higher 

than 20%. This is even true for Ge-ATR, i.e., under the condition that the refractive 

index is smaller than the critical refractive index of Ge.   
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3. Comparison of theory and experiment 

In order to qualitatively test and validate the theoretical model and results 

presented above, a series of experiments with mixtures of carbon black and toluene 

were carried out. The exact composition at the IRE-sample interface is difficult to 

determine, but the experimental procedures were such that a clear variation of the 

carbon content at the IRE interface could be achieved, which is sufficient for our 

comparison. Fig. 1.11 shows the spectra obtained when different proportions of carbon 

black and toluene. The development of the experimental spectra with increasing carbon 

content agrees well with the theoretical trends revealed in Fig. 1.10. This demonstrates 

that the model includes all relevant effects.  

 

Fig.1.11 Experimental Spectra of different mixtures containing carbon black and 

toluene. The spectrum of pure toluene is displayed at the bottom. The left panel shows 

the overall spectra and the right panel displays the enlarged region 650-800 cm-1. 

Spectra are displayed with offset for clarity. 

The calculation and fitting method of the spectrum is a nonlinear fit to determine 

the parameters 𝑥1 , 𝑥2 , 𝑦 , and 𝑎 . The data of the mix #3 sample (see Fig. 1.11) are 

shown in Fig. 1.12 with the removed diamond absorption peaks between 1775-2661 

cm-1.  
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Fig.1.12 A) Experimental and simulated spectra of the sample mix #3 and B) their 

difference spectrum. 

The difference spectrum in Fig.4B shows small deviations from zero, which may 

be caused by the following: 1) 𝐴(𝑣)  was used instead of 𝑘(𝑣)  for calculating the 

complex refractive index of the carbon black; 2) Only the influence of the compound 

refractive index of the mixture was taken into consideration as the reason for the 

distortion. In fact, there are many factors that could influence the result including the 

solid carbon content, the solid-liquid ratio, the type of liquid, the shape and size of the 

solid, the solid-liquid molecular interactions, a numerical error, etc. As the spectrum 

simulated using to the above model shows a good agreement with the experiment and 

is capable of predicting the overall trends, we are confident that all relevant phenomena 

are included. 

4. Conclusions 

The present work aims at better understanding the ATR spectra of complex 

mixtures, i.e. mixtures of organic or inorganic liquids with solids exhibiting a high 

refractive index. The ATR spectra of such mixtures are subject to severe distortions that 

can lead to misinterpretation of the data. We explored the reasons for the change of the 

spectrum near the critical angle and theoretically simulated the shape change and 

displacement of absorption peaks. The theoretical results were confirmed in 

experiments using toluene and carbon black as a model system. Moreover, the mixing 

law of 𝑛(𝑣) of the complex refractive index and its impact on the resulting spectrum 

was studied. The proposed model allows the correction of distorted spectra and 
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therefore aids the correct interpretation of experimental results. The model and 

correction method, however, is not limited to the infrared spectral range. So, the method 

can be applied across in the entire spectrum. The development of further specific 

simulation procedures, elaboration on the curve correction, and the analysis of spectral 

calibration is the subject of ongoing work. 
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2. Introduction to Various Transforms 

2.1 Phase-Sensitive Detection (PSD)  

1. The trigonometric Fourier series52-55 

A signal 𝑓(𝑡) with a period of 𝑇 can be expressed as a Fourier series expansion in 

the form of a trigonometric function in each period52, 53, 

𝑓(𝑡) = 𝑎0 + ∑(𝑎𝑘 𝑐𝑜𝑠 𝑘⍵𝑡 + 𝑏𝑘 sin 𝑘⍵𝑡)

∞

𝑘=1

              (2.1) 

Which means that any periodic signal can be composed of a constant term 𝑎0, usually 

called a direct current(dc) component52, and the superposition of multiple trigonometric 

functions with different frequencies. 

Where, 

⍵ =
2𝜋

𝑇
= 2𝜋𝑓            (2.2) 

And 𝑘 is frequency multiplier (𝑘 = 1,2,3… ); 𝑎0, 𝑎𝑘, 𝑏𝑘 are Fourier coefficients. 

Especially, 𝑎0 can be treated as the result of 𝑘 = 0,52 

𝑎0 =
1

𝑇
∫ 𝑓(𝑡)𝑑𝑡

𝑇

0

              (2.3) 

𝑎𝑘 =
2

𝑇
∫ 𝑓(𝑡)cos (𝑘⍵𝑡)𝑑𝑡

𝑇

0

              (2.4) 

𝑏𝑘 =
2

𝑇
∫ 𝑓(𝑡)sin (𝑘⍵𝑡)𝑑𝑡

𝑇

0

              (2.5) 

In addition, 𝑎𝑘 and 𝑏𝑘 can be expressed in polar coordinates as following, 

𝑎𝑘 = 𝑐𝑘 sin𝜑𝑘              (2.6) 

𝑏𝑘 = 𝑐𝑘 cos𝜑𝑘              (2.7) 

Eqn. 2.1 can be expressed as  

𝑓(𝑡) = 𝑎0 + ∑(𝑐𝑘 sin𝜑𝑘 𝑐𝑜𝑠 𝑘⍵𝑡 + 𝑐𝑘 cos𝜑𝑘 sin 𝑘⍵𝑡)

∞

𝑘=1

              (2.8) 

Where 𝑐𝑘 is the amplitude and 𝜑𝑘 is phase angle.52 

𝑐𝑘 = √𝑎𝑘
2 + 𝑏𝑘

2              (2.9) 

Eqs. 2.1-2.9 are from “Quantitative modulated excitation Fourier transform infrared 
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spectroscopy”52 by Dieter Baurecht. 

𝜑𝑘 = arctan (−
𝑏𝑘

𝑎𝑘
 )            (2.10) 

Combine sum-to-product formula 

sin(𝑎 + 𝑏) = sin 𝑎 cos 𝑏 + cos 𝑎 sin 𝑏               (2.11) 

Eqn. 2.8 can be further expressed on the basis of Eqn. 2.11 as 

𝑓(𝑡) = 𝑎0 + ∑ 𝑐𝑘 sin (𝑘⍵𝑡 + 𝜑𝑘)

∞

𝑘=1

              (2.12) 

At this point, we can explain more specifically that any periodic signal that satisfies 

the Dirichlet condition can be decomposed into the sum of the dc component, the 

fundamental component and an infinite number of harmonic components53, 54, 56. 

In which, 𝑎0 is the dc component, 𝑘 = 1 is the fundamental component, 𝑘 > 1 

are higher harmonic components. 𝜑𝑘 can be treated as phase delay.  

2. The complex exponential Fourier series56, 57  
A signal 𝑓(𝑡) with period 𝑇 can also be expressed as the following Fourier series 

expansion in complex exponential form in each period57, 

𝑓(𝑡) = ∑ 𝑑𝑘𝑒
𝑖𝑘⍵𝑡

∞

𝑘=−∞

              (2.13) 

𝑑𝑘 are Fourier coefficients. 

𝑑𝑘 =
1

𝑇
∫ 𝑓(𝑡)𝑒−𝑖𝑘⍵𝑡𝑑𝑡
𝑇

              (2.14) 

And The relationship between the exponential form and the Fourier coefficient of the 

trigonometric function is as following. 

𝑑𝑘 =
𝑐𝑘𝑒

𝑖𝜑𝑘

2
              (2.15) 

Corresponding calculation processing as following, 

According to Euler's formula, as Fig.2.1 

𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥               (2.16)  

𝑒−𝑖𝑥 = cos 𝑥 − 𝑖 sin 𝑥               (2.17) 

𝑠𝑖𝑛 𝑥 =
𝑒𝑖𝑥  −  𝑒−𝑖𝑥

2𝑖
              (2.18)    

𝑐𝑜𝑠 𝑥 =
𝑒𝑖𝑥+ 𝑒−𝑖𝑥

2
              (2.19)             Fig. 2.1 Euler's formula58 
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Eqn. 2.13 can be expressed as 

𝑓(𝑡) = 𝑎0 + ∑(𝑎𝑘

𝑒𝑖𝑘⍵𝑡 + 𝑒−𝑖𝑘⍵𝑡

2
+ 𝑏𝑘

𝑒𝑖𝑘⍵𝑡 − 𝑒−𝑖𝑘⍵𝑡

2𝑖
)

∞

𝑘=1

               

                       = 𝑎0 + ∑(
𝑎𝑘 − 𝑖𝑏𝑘

2
) 𝑒𝑖𝑘⍵𝑡 +

∞

𝑘=1

∑(
𝑎𝑘 + 𝑖𝑏𝑘

2
) 𝑒−𝑖𝑘⍵𝑡

∞

𝑘=1

              (2.20) 

Set 

𝑑𝑘 =
𝑎𝑘 + 𝑖𝑏𝑘

2
              (2.21) 

𝑑′𝑘 =
𝑎𝑘 − 𝑖𝑏𝑘

2
              (2.22) 

Then 

𝑓(𝑡) = 𝑎0 + ∑ 𝑑′𝑘 𝑒
𝑖𝑘⍵𝑡 +

∞

𝑘=1

∑ 𝑑𝑘 𝑒
−𝑖𝑘⍵𝑡

∞

𝑘=1

              (2.23) 

We can introduce 𝑛 = −𝑘 = −1,−2… 

𝑓(𝑡) = 𝑎0 + ∑ 𝑑′−𝑛 𝑒
−𝑖𝑛⍵𝑡 +

−∞

𝑛=−1

∑ 𝑑𝑘 𝑒
−𝑖𝑘⍵𝑡

∞

𝑘=1

 

= 𝑎0 + ∑ 𝑑′−𝑘 𝑒
−𝑖𝑘⍵𝑡 +

−∞

𝑘=−1

∑ 𝑑𝑘 𝑒
−𝑖𝑘⍵𝑡

∞

𝑘=1

              (2.24) 

Set 

𝑑′−𝑘 = 𝑑𝑘, 𝑘 = −1,−2,… 

𝑓(𝑡) = ∑ 𝑑𝑘 𝑒
𝑖𝑘⍵𝑡

∞

𝑘=−∞

                  (2.25) 

Where 

𝑑0 =
𝑎0

2
 ,   𝑘 = 0 

𝑑𝑘 =
𝑎𝑘 + 𝑖𝑏𝑘

2
 , 𝑘 = 1,2, …              (2.26) 

𝑑𝑘 =
𝑎−𝑘 + 𝑖𝑏−𝑘

2
 , 𝑘 = −1, −2,…              (2.27) 

𝑎𝑘 =
2

𝑇
∫ 𝑓(𝑡)cos (𝑘⍵𝑡)𝑑𝑡
𝑇

              (2.28) 

𝑏𝑘 =
2

𝑇
∫ 𝑓(𝑡)sin (𝑘⍵𝑡)𝑑𝑡
𝑇

               (2.29) 
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𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥               (2.30) 

𝑑𝑘 =
1

𝑇
∫ 𝑓(𝑡) [cos(𝑘⍵𝑡) + 𝑖 sin(𝑘⍵𝑡)]𝑑𝑡 ,
𝑇

   𝑘 = 1,2, …   

=
1

𝑇
∫ 𝑓(𝑡)𝑒𝑖𝑘⍵𝑡𝑑𝑡
𝑇

,   𝑘 = 1,2, …              (2.31) 

As well 

𝑑𝑘 =
1

𝑇
∫ 𝑓(𝑡)𝑒𝑖𝑘⍵𝑡𝑑𝑡 ,
𝑇

    𝑘 = −1,−2,…              (2.32) 

So  

𝑑𝑘 =
1

𝑇
∫ 𝑓(𝑡)𝑒𝑖𝑘⍵𝑡𝑑𝑡 
𝑇

               (2.33) 

It should be pointed out that the complex exponential Fourier coefficients are usually 

not used in modulated excitation spectroscopy(MES)59 or PSD52, 60 described later. 

Because Fourier coefficients in their complex exponential form contain both real and 

imaginary components of the spectrum, which are intrinsically linked through KK 

relationship61-63. This relationship connects the real part, which reflects refraction, and 

the imaginary part, associated with absorption in a material's spectrum. In ATR-FTIR 

spectroscopy64, spectral distortion caused by refraction is viewed as undesirable, 

creating a need to correct or manage this distortion. 

By performing a Fourier transform using complex exponential coefficients, both the 

real and imaginary parts, representing the inherent refractive and absorptive 

characteristics of the spectrum are captured. when using complex exponential Fourier 

coefficients for correcting or simulating distorted spectra, phase modulation across a 

broader range—typically from 0 − 2𝜋 is often required. This approach allows it to be 

used to simulate or correct the distortions caused by refraction, often necessary in ATR-

FTIR due to its reliance on internal reflection.  

However, complex exponential coefficients are typically unnecessary for PSD. In 

PSD, due to symmetry, it is usually only necessary to modulate the phase within a 

narrow range (usually 0 − 𝜋 ) and use this phase information to extract the desired 

signal or reduce noise.     
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3. Fourier Trigonometric Function Expansion of Absorbance52 

We have introduced the calculation formula for the absorption spectrum of a single 

substance in the chapter on Maxwell’s Equations. In fact, the absorbance is a frequency-

dependent coefficient, so it is often written as 𝐴(𝑣). When there are N substances in 

the component, the absorption spectrum of each substance can be represented by 

𝐴𝑖(⍵), 𝑖 = 1,2…𝑁. But for simplicity, the following are omitted as 𝐴(⍵).  

Since the absorbance in the frequency domain is a state that corresponds to a 

specific phase angle, we usually use a 90° difference between the two states with the 

largest and smallest amplitudes of the examined absorbance. when we have different 

transients in the observed process, they will have maxima at different phases, one of 

the most important features of PSD to find them in a large background absorption. 

(Unlike what we will introduce in the later article on distorted spectra, we do not 

consider here the situation of distorted spectra due to the KK relationship. In other 

words, we only consider the imaginary part of the spectrum, which is the positive peak, 

and do not consider the real part, which is the distortion peak). If the real part is 

considered, and combined with the relevant knowledge of KK relationship, it can be 

seen that the two signals satisfying the KK relationship are orthogonal, that is, the phase 

angle is turned by 90°. Then, for the spectrum of substances, we only take the situation 

in ATR as an example to introduce the situation of the absorption spectrum. (Of course, 

this is completely applicable to other types of spectra or signals, but the calculation 

method may be slightly different). 

If the absorption spectrum of a pure substance that satisfies the total reflection 

condition is the maximum value, it is the case where the phase delay is 0°, that is 

𝐴0°(⍵). Then, there is the corresponding case with 90° phase delay, 𝐴90°(⍵) satisfying 

the orthogonal relationship, namely KK relationship. Similarly, for the absorption 

spectrum 𝐴𝑘
0°(⍵) of one of the components, there is also a component 𝐴𝑘

90°(⍵) 

corresponding to the orthogonal relationship. 

When we denote the total absorption spectrum recorded within a period 𝑇  as 

𝐴(𝑣, 𝑡) . Then, like the above expansion for the signal, we can also express the 

absorption spectrum as the Fourier trigonometric function expansion, as52 

𝐴(⍵, 𝑡) = 𝐴0(⍵) + ∑(𝐴𝑘
90°(⍵) 𝑐𝑜𝑠 𝑘⍵𝑡 + 𝐴𝑘

0°(⍵) sin 𝑘⍵𝑡)

∞

𝑘=1
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= 𝐴0(⍵) + ∑ 𝐴𝑘(⍵) 𝑠𝑖𝑛[𝑘⍵𝑡 + 𝜑𝑘

∞

𝑘=1

(⍵)]              (2.35) 

In which  

                           𝐴0(⍵) =
1

𝑇
∫ 𝐴(⍵, 𝑡)𝑑𝑡

𝑇

0
               (2.36)  

𝐴𝑘
90°(⍵) =  𝐴𝑘(⍵)sin𝜑𝑘 =

2

𝑇
∫ 𝐴(⍵, 𝑡)cos (𝑘⍵𝑡)𝑑𝑡

𝑇

0

              (2.37) 

𝐴𝑘
0°(⍵) =  𝐴𝑘(⍵)cos𝜑𝑘 =

2

𝑇
∫ 𝐴(⍵, 𝑡)sin (𝑘⍵𝑡)𝑑𝑡

𝑇

0

              (2.38) 

𝐴𝑘(⍵)  is the amplitude, i.e. the signal maximum, is here the case of maximum 

absorbance. 𝜑𝑘(⍵) is phase delay which relative with frequency here52.  
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4. Modulation Excitation Spectroscopy (MES) 
Modulation Excitation (ME) refers to the introduction of a periodic change in the 

system, such as concentration, temperature, pressure or PH, etc. Modulation Excitation 

and phase-sensitive detection are usually used together in Modulation Excitation 

Spectroscopy (MES)65-67. That is, the corresponding spectrum is obtained on the basis 

of periodically changing a reaction condition, and then demodulated by PSD. The 

purpose is to filter out unnecessary background noise and absorption changes that does 

not result from the excitation of the sample65. Moreover, constant parts of absorption 

(dc) are also suppressed. By using ME-PSD, only the response signals consistent with 

the periodic variables are retained. This has gained wide application in heterogeneous 

catalysis. Next, let's take the catalyst on the surface of ATR-FTIR as an example where 

the concentration of the sample over the catalyst changes periodically. Continuously 

record the changes of the spectrum to obtain a time series of spectra. The recorded time 

series of spectra can then be demodulated by PSD to obtain phase resolved spectra. The 

corresponding schematic is shown below. 

Fig. 2.2 Principle of MES in ATR-FTIR. 

Of course, the periodic modulation waveform can be various, such as Sine, Cosine, 

Square, Triangular and so on. However, in the process of concentration adjustment, it 

is more common to use a square wave, because it is easier to control during the 

experiment by only controlling the two states of one of the substances, namely adding 

or not adding, that is, 1 and 0. There are also many kinds of instruments used for 

detection, such as ATR-FTIR68-72, diffuse reflectance Fourier transform 

spectroscopy(DRIFTS)73-75, Raman, X-ray diffraction (XRD)76, X-ray absorption 

spectroscopy (XAS)77, etc. 

 

5. Phase-Sensitive Detection (PSD) 
The PSD78 in ME is different from the usual signal detection (usually in lock-in 

amplification)65. We will introduce the PSD in ME first, and introduce the PSD in lock-
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in amplification later.  

 

Figure. 2.3 ME with PSD. 

As we have introduced the situation of ME before, now PSD is used to demodulate 

the spectrum acquired in ME. The specific process is shown in Fig. 2.3. 

That is, use a periodically changing external stimulus to record the time-varying 

spectrum on the instrument, and then use the same simulation parameters as the 

stimulation period 𝑇  (or frequency ⍵ ) to multiply the measured time-domain 

spectrum to obtain the corresponding frequency-domain Spectrum, and finally ,the so-

called phase domain spectra are obtained by changing the phase angle from 0 – 180°

(ie 0 − 𝜋 ). Finally, those spectra only contain absorbances that change periodically 

with the stimulus. 

The relevant calculation formula is shown in Eqn. 2.3952 

𝐴𝑘

𝜙𝑘
𝑃𝑆𝐷

(𝑣) =
2

𝑇
∫ 𝐴(𝑣, 𝑡) 𝑠𝑖𝑛(𝑘⍵𝑡 +  𝜙𝑘

𝑃𝑆𝐷) 𝑑𝑡;
𝑇

0

  𝑘 = 1,2,3…              (2.39) 

In which, 𝐴𝑘

𝜙𝑘
𝑃𝑆𝐷

(𝑣) is the phase -resolved modulation spectrum, usually with 𝑘 = 1 

corresponding to the fundamental state. 𝜙𝑘
𝑃𝑆𝐷 is artificially phase angle setting52. 

In fact, the process of multiplying the time-varying spectrum with an analog function 

is more similar to the time-domain multiplication and frequency-domain convolution 

in the Fourier transform that we will introduce later. From frequency domain 

spectroscopy to phase domain spectroscopy (that is, the process of changing the phase 

angle from 0-180°) actually involves two processes of inverse fast Fourier transform  

Fig.2.4 Processing of PSD. 
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and fast Fourier transform (FFT)79. As shown in Fig. 2.4. 

But it should be pointed out that the so-called inverse Fourier transform and Fourier 

transform here only use the imaginary part, while the real part is ignored (that is, only 

𝑠𝑖𝑛𝑥 is used instead of 𝑒𝑖𝑥). So, the so-called Fourier transform and inverse Fourier 

transform here are not real full versions of Fourier transform and inverse Fourier 

transform. The difference between using only the imaginary part of 𝑠𝑖𝑛𝑥 and using 𝑒𝑖𝑥 

to change the phase angle is shown in Fig. 2.5. The corresponding equation is shown as 

Eqn. 2.40. 

𝐴𝑘

𝜙𝑘
𝑃𝑆𝐷

(𝑣) =
2

𝑇
∫ 𝐴(𝑣, 𝑡)𝑒𝑖(𝑘⍵𝑡 + 𝜙𝑘

𝑃𝑆𝐷)𝑑𝑡;
𝑇

0

  𝑘 = 1,2,3…              (2.40) 

Fig. 2.5 Phase demodulation with 𝑠𝑖𝑛 𝑥 and  𝑒𝑖𝑥. 

It is very obvious that there is no "twisted peak" when the phase angle difference 

is 90° due to the absence of orthogonal real parts (we will explain in detail later in the 

KK transformation). Compared to using the full version of the complex exponential 

𝑒𝑖𝑥 form, the trigonometric function formula only needs to change half of the phase 

angle, that is, from 0 − 𝜋, to obtain the desired result. 

Fig. 2.6 Principal diagram of PSD / digital lock-in amplifier. 

Next, we will introduce the PSD in signal detection and the difference with the 

PSD in ME. Fig. 2.6 is a simple lock-in amplifier80, 81 that includes a PSD. Usually, the 

signal to be tested and the reference signal are input into the phase-sensitive detector 
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and multiplied therein, and the corresponding noise-filtered signal is obtained through 

a low-pass filter (LPF). There is a process of multiplying the reference signal in both 

PSD processes, the difference is that there is no low-pass filtering process in the MES 

process. When using a lock-in amplifier for demodulation in modulation excitation (ME) 

experiments, the order of the signal to be detected (usually the fundamental tone, 𝑘 =

1) is set before the measurement52. The output consists normally of two signals, one 

representing ϕ = 0°  (in-phase) and the other ϕ = 90°   (quadrature), which can be 

used to calculate other phase lags later. However, this approach has a significant 

limitation. By focusing only on the fundamental frequency, you lose higher-order 

responses. These higher-order responses occur when52, 82: 

- The excitation is not purely sinusoidal, causing harmonics. 

- The system response is non-linear, leading to complex behaviors. 

Therefore, critical information about nonlinear effects or other dynamic properties of 

the system may be ignored. To address this limitation, multi-harmonic lock-in 

amplifiers or Fourier-based methods can be explored to capture a wider range of signal 

frequencies52. 
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2.2 Fourier Transform (FT) 

Fourier transform (FT)38, 83, 84 is a method that can convert time-domain signals and 

frequency-domain signals into each other. Eqs. 2.41 and 2.42 shows the continuous 

Fourier transform75 

𝐹(𝑓) = ∫ 𝑓(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
∞

−∞

              (2.41) 

𝑓(𝑡) = ∫ 𝐹(𝑓)𝑒𝑖2𝜋𝑓𝑡𝑑𝑓
∞

−∞

              (2.42) 

The above formula can be abbreviated as 𝑓(𝑡) ↔ 𝐹(𝑓), or 𝑓(𝑡) ⇔ 𝐹(𝑓). Sometimes 

we also express 𝐹  as the Fourier transform of 𝑓 , and 𝐹−1  as the inverse Fourier 

transform of 𝑓. 

The Fourier transform can also be expressed in 

the form of angular frequency 

𝐹(⍵) = ∫ 𝑓(𝑡)𝑒−𝑖⍵𝑡𝑑𝑡
∞

−∞

              (2.43) 

𝑓(𝑡) =
1

2𝜋
∫ 𝐹(⍵)𝑒𝑖⍵𝑡𝑑⍵

∞

−∞

              (2.44) 

where ⍵ = 2𝜋𝑓 is the angular frequency (rad/s).         

Fig. 2.7 Fourier transform 

Among the many basic properties of the Fourier transform, there are two most 

important properties for us, one is the differential property; the other is the convolution 

property. 

1. Differential properties of Fourier transform 

A. For lim
|𝑡|→∞

𝑓(𝑡) = 0, if the Fourier transform corresponding to 𝑓(𝑡) is 𝐹(⍵), that is, 

𝑓(𝑡) ↔ 𝐹(⍵), then 𝑓(𝑡) differential 𝑓′(𝑡) corresponding to the Fourier transform is 

𝑖⍵𝐹(𝑓⍵), namely 

𝑓′(𝑡) ↔ 𝑖⍵𝐹(⍵)              (2.45) 

Mathematical proof is as follows       

𝐹[𝑓′(𝑡)] = ∫ 𝑓′(𝑡)𝑒−𝑖⍵𝑡𝑑𝑡
∞

−∞

= ∫ 𝑒−𝑖⍵𝑡𝑑𝑓(𝑡)
∞

−∞

               

= [𝑒−𝑖⍵𝑡𝑓(𝑡)]|
+∞

−∞
− ∫ 𝑓(𝑡)𝑑𝑒−𝑖⍵𝑡

∞

−∞
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= 0 − ∫ 𝑓(𝑡)𝑒−𝑖⍵𝑡
∞

−∞

(−𝑖⍵)𝑑𝑡 

= 𝑖⍵∫ 𝑓(𝑡)𝑒−𝑖⍵𝑡
∞

−∞

𝑑𝑡 = 𝑖⍵𝐹(⍵)              (2.46) 

Correspondingly, we can achieve 

𝑓(𝑛)(𝑡) ↔ (𝑖⍵)𝑛𝐹(⍵)              (2.47) 

When |𝑡| → ∞, 𝑓′(𝑡) = 𝑓′′(𝑡) = ⋯ = 𝑓(𝑛−1)(𝑡) = 0. 

B. 

(−𝑖𝑡)𝑓(𝑡) ↔ 𝐹′(⍵)              (2.48) 

(−𝑖𝑡)(𝑛)𝑓(𝑡) ↔ 𝐹(𝑛)(⍵)              (2.49) 

Equation above can also be written as  

𝑡𝑛𝑓(𝑡) ↔ 𝑖𝑛𝐹(𝑛)(⍵)              (2.50) 

The differential nature of the Fourier transform is very useful for us to solve the 

differential equation to obtain the Lorentz-Drude model in Chapter 2.3. 

1. Convolutional of the Fourier transform85 

Convolution is defined as follows 

𝑓(𝑡) ∗ 𝑔(𝑡) = ∫ 𝑓(𝑡 − 𝜏)𝑔(𝜏)𝑑𝜏 =
∞

−∞

∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
∞

−∞

              (2.51) 

Where ∗  means convolution, and the convolution theorem means that the Fourier 

transform of the function convolution is the product of the Fourier transform of the 

function, such as Eqn.2.52. It means that the convolution in the time domain 

corresponds to the product in the frequency domain 

𝐹{𝑓 ∗ 𝑔} = 𝐹{𝑓} · 𝐹{𝑔}              (2.52) 

The same Eqn. 2.53 also exists, indicating that the convolution in the frequency domain 

corresponds to the product in the time domain 

𝐹{𝑓 · 𝑔} = 𝐹{𝑓} ∗ 𝐹{𝑔}             (2.53) 

Eqn. 2.51 can also be written 

𝑓 ∗ 𝑔 = 𝐹−1{𝐹{𝑓} · 𝐹{𝑔}}              (2.54) 

In the Fourier transform, convolution in the time domain corresponds to product in 

the frequency domain. In the signal processing process, the principle of the filter is to 

use a specific time-domain signal 𝑔(𝑡)  to convolve with the original signal 𝑓(𝑡) , 

which means that the spectral function 𝐺(⍵)  corresponding to 𝑔(𝑡)  needs to be 

compared with 𝑓(𝑡)  is multiplied by the corresponding spectral function 𝐹(⍵) . If 
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𝐺(⍵) is 0 at some frequency components, it means that the product of 𝐹(⍵) · 𝐺(⍵) 

corresponding to this frequency is 0. Then the value of the obtained new signal at this 

frequency is also 0. Then for the signal 𝑓(𝑡), it is like filtering out certain frequencies 

after convolution with 𝑔(𝑡). Therefore, 𝑔(𝑡) is called a filter. 

In this thesis, the convolution theorem is not only related to the calculation of 

Hilbert Transform and KK Transform, but also the basis of deep learning, especially 

CNN algorithm. 

2. Discrete Fourier Transform (DFT)83, 86 and Fast Fourier transform (FFT)79, 83 

When it comes to signal processing85, especially in computer programming, we 

usually use Discrete Fourier Transform (DFT)87. This implies that the Fourier transform 

is discrete in both the time domain and the frequency domain. And the sequences of the 

discrete Fourier transform in both the time domain and the frequency domain are of 

finite length, which is more in line with the actual situation of our sampling and signal 

processing. 

The discrete Fourier transform means transform a sequence of N complex 

numbers {𝑥𝑛} = 𝑥0, 𝑥1, ⋯ 𝑥𝑁−1  to another sequence{𝑋𝑛} = 𝑋0, 𝑋1,⋯𝑋𝑁−1 . For the 

convenience of understanding, {𝑥𝑛} and {𝑋𝑘} can be regarded as 𝑓(𝑡) and 𝐹(𝑤) in 

Eqn. 2.43 and Eqn. 2.44 respectively. 

𝑋𝑘 = ∑𝑥𝑛 · 𝑒−
𝑖2𝜋
𝑁

𝑘𝑛

𝑁−1

𝑛=0

              (2.55) 

According to Euler's formula as  

𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥               (2.56) 

To get 

𝑋𝑘 = ∑𝑥𝑛 · [cos (
2𝜋

𝑁
𝑘𝑛) − 𝑖 · sin (

2𝜋

𝑁
𝑘𝑛)]              (2.57)

𝑁−1

𝑛=0

 

At the same time, in order to speed up the calculation, the Cooley–Tukey 

algorithm88 reduces the amount of calculation from 𝑂(𝑁2)  to 𝑂(𝑁𝑙𝑜𝑔2𝑁)  by 

recursively decomposing the original array into smaller arrays. This calculation method 

significantly reduces the amount of computation, so it is also called Fast Fourier 

transform (FFT)89. 

Just like its name, FFT speeds up calculation, greatly reduces calculation and 

https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Complex_number
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measurement time, and enables Fourier transform to be more widely used in different 

fields. The focus of this paper is Fourier transform infrared spectroscopy (FTIR), which 

is based on the fast Fourier transform method to measure data. 

2.3 Hilbert Transform 

1. The Hilbert transform 

The Hilbert transform90 is a calculation method defined in mathematics and signal 

processing91. The Hilbert transform of a function or signal 𝑓(𝑡) can be considered as 

the convolution of 𝑓(𝑡) with the function 
1

𝜋𝑡
,92 such as Eqn. 2.58 

ℋ[𝑓(𝑡)] = 𝑓(𝑡) = 𝑓(𝑡) ∗
1

𝜋𝑡
=

1

𝜋
∫

𝑓(𝜏)

𝑡 − 𝜏
𝑑𝜏

∞

−∞

              (2.58)  

ℋ represents apply Hilbert transform on 𝑓(𝑡). And 𝑓(𝑡) is the Hilbert transformation 

corresponding to 𝑓(𝑡). 

Combined with the convolution theorem, we can get 

ℋ[𝑓(𝑡)] = 𝑓(𝑡) = 𝑓(𝑡) ∗
1

𝜋𝑡
↔ 𝐹(𝑓)[−𝑖𝑠𝑔𝑛(𝑓)] = {

−𝑖𝐹(𝑓)   𝑓 ≥ 0

𝑖𝐹(𝑓)     𝑓 < 0
               (2.59) 

where 𝑠𝑔𝑛 is the signum function, as showed in Fig. 2.8  

𝑠𝑔𝑛(𝑡) = {
1      𝑡 > 0 
0     𝑡 = 0
−1  𝑡 < 0

              (2.60) 

The Hilbert transform can be treated as Fourier transform the 

signal first and then shift the phase of the transform result by 

90°.                                                                                            

Fig. 2.8 𝑠𝑔𝑛(𝑡)                                   

The Hilbert transform is used in our study to relate the real and imaginary parts of 

the spectrum. Hilbert transform has an important property. The Hilbert transform of the 

𝑐𝑜𝑠 signal is a 𝑠𝑖𝑛 signal, and the Hilbert transform of the 𝑠𝑖𝑛 signal is −𝑐𝑜𝑠. Which 

is essential for us to understand the correction of distorted spectra in the frequency 

domain.  

This sentence is expressed by the formula as 

If 

𝑓(𝑡) = 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝜃)              (2.61) 

We can get 

https://en.wikipedia.org/wiki/Sign_function
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𝐻[𝑓(𝑡)] = 𝑓(𝑡) = 𝑠𝑖𝑛(2𝜋𝑓0𝑡 + 𝜃)              (2.62) 

Similarly, if  

𝑓(𝑡) = 𝑠𝑖𝑛(2𝜋𝑓0𝑡 + 𝜃)              (2.63) 

Then 

𝐻[𝑓(𝑡)] = 𝑓(𝑡) = − 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝜃)              (2.64) 

At the same time, we can easily infer that the Hilbert transform of the baseband 

signal is multiplied by 𝑐𝑜𝑠 is to directly change 𝑐𝑜𝑠 to 𝑠𝑖𝑛. Namely, 

if  

𝑓(𝑡) = 𝑚(𝑡) 𝑐𝑜𝑠(2𝜋𝑓0𝑡)              (2.65) 

where 𝑚(𝑡) is the baseband signal, and the bandwidth 𝑤 < 𝑓, then 

ℋ[𝑓(𝑡)] = 𝑓(𝑡) = 𝑚(𝑡) 𝑠𝑖𝑛(2𝜋𝑓0𝑡)              (2.66) 

Of course, in signal processing, 𝑓(𝑡) is usually a function in the time domain. But 

in our research, the calibration curve is a function in the frequency domain. However, 

it is not difficult to understand the nature of the Fourier transform in Chapter 2.1 to link 

the time domain and the frequency domain. 

 

 

Fig. 2.9 𝑓(𝑡) , ℋ[𝑓(𝑡)]  and ℋ[𝑓(𝑡)]  (Left, Right); angle of 𝑓(𝑡) , ℋ[𝑓(𝑡)]  and 

ℋ[𝑓(𝑡)](Middle). 

As shown in Fig. 2.9 are 𝑓(𝑥) = 𝑐𝑜𝑠𝑥  completes first Hilbert transform and 

second Hilbert transform. Which is the process of 𝑐𝑜𝑠𝑥 → 𝑠𝑖𝑛𝑥 → −𝑐𝑜𝑠𝑥. It is easy to 

see that each Hilbert transform for 𝑐𝑜𝑠𝑥  is translated to the right side of  
𝜋

2
  . If 

combined with Euler's formula93 

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃               (2.67) 

We can easily get the conclusion that each Hilbert transform for 𝑐𝑜𝑠𝑥  is the 

transformation for 𝜃 =
𝜋

2
 in a clockwise direction as shown in Fig.2. 9 (Middle). At the 

same time, according to Euler's formula, it can also be considered as changing from the 
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real part to the imaginary part, and from the imaginary part to the opposite number of 

the real part. 

If we look at Hilbert transform in another way, which means comparing the peak 

spectrum of 𝑐𝑜𝑠𝑥 separately as shown in Fig. 2.9 (Right). Then it is easy to find that 

𝑐𝑜𝑠𝑥 has experienced the process of positive peak, convex and concave twisted peak, 

at the end inverted peak. Whereas in the Fourier transform, we know that various graphs, 

in our case is infrared spectrum, can be considered as a combination of sin (𝑘𝑥) and 

𝑐𝑜𝑠(𝑘𝑥) (𝑘 for different frequencies), or it can be said to be a combination of 𝑐𝑜𝑠(𝑘𝑥). 

The reason why the distorted spectrum can be corrected into a normal spectrum by 

using the Hilbert transform is that it uses an operation like changing 𝑐𝑜𝑠𝑥 to 𝑠𝑖𝑛𝑥. The 

fundamental reason lies in the transformation is using Fourier transform with a fixed 

angle of 𝜃 =
𝜋

2
  (at this time, the angle of distortion can be considered as 𝜃 =

𝜋

2
 or 

𝜃 = −
𝜋

2
). Of course, this is also doomed to pure Hilbert transform or Kramers–Kronig 

transform, that is, the Fourier transform with a fixed angle 𝜃 =
𝜋

2
  cannot accurately 

correct the distorted spectrum (sometimes the twisted angle is not necessarily 𝜃 =
𝜋

2
 or 

𝜃 = −
𝜋

2
). So, we need to change the correction angle according to the spectral distortion. 

Secondly, another property about 𝑓(𝑡)  and 𝑓(𝑡)  is very important for the 

Kramers–Kronig transform94, 95 we will introduce next is 𝑓(𝑡) is opposite to the parity 

of 𝑓(𝑡). That is, if 𝑓(𝑡) is an odd function, then 𝑓(𝑡) is an even function, namely 

𝑓(−𝑡) =
1

𝜋
∫

𝑓(𝜏)

−𝑡 − 𝜏
𝑑𝜏 =

1

𝜋
∫

−𝑓(−𝜏)

−𝑡 − 𝜏
𝑑𝜏 =

∞

−∞

∞

−∞

1

𝜋
∫

𝑓(𝜏)

𝑡 − 𝑥
𝑑𝜏 = 𝑓(𝑡)

∞

−∞

          (2.68) 
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2. Kramers–Kronig transform 

Kramers–Kronig (KK) transform62, 63, 96-99, that is, Kramers–Kronig relations, is 

essentially a Hilbert transform of a square-integrable function with causality61. In short, 

KK transform can be considered as a special case of Hilbert transform, like a square is 

to a rectangle. 

KK transform is often used to analyze the properties of physical systems91, such as 

electrical circuits and optical systems61, 100. If the Fourier transform is related to the 

time domain and the frequency domain, KK transform is related to the real part and the 

imaginary part. In our case, the real part and the imaginary part of the frequency domain 

are mainly considered. 

Kramers–Kronig transform can be expressed as61 

�̂�(𝑓) = 𝑥1(𝑓) + 𝑖𝑥2(𝑓)              (2.69) 

𝑥1(𝑓) =
1

𝜋
𝑃 ∫

𝑥2(𝑓
′)

𝑓′ − 𝑓

∞

−∞

𝑑𝑓′              (2.70) 

𝑥2(𝑓) = −
1

𝜋
𝑃 ∫

𝑥1(𝑓
′)

𝑓′ − 𝑓

∞

−∞

𝑑𝑓′              (2.71) 

where P denotes the Cauchy principal value. Its integral area is formed by removing the 

extreme point 𝑓′ of the integrand with a minimal semicircle. Which is the entire upper 

half complex plane (with real axis) except for the point 𝑓′ in Fig. 2.10. 

  
Fig. 2.10 Integral region of  𝑥1(𝑓) (𝑅 → ∞, r → 0).   

Kramers–Kronig transform, which can be obtained from Cauchy's residue theorem 

of complex integration101. And Kramers–Kronig is the key to connect the real part and 

the imaginary part.  

Let’s back to the KK transform. Since time starts from 0 in physical systems and 

signal processing systems, we can know that the time domain function �̂�(𝑡) 
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corresponding to �̂�(𝑓) is a real function. That is when 𝑡 < 0，�̂�(𝑡) = 0. Then we can 

get �̂�(−𝑓)=�̂�∗(𝑓), * is complex conjugate. So, the real part 𝑥1(𝑓) of  �̂�(𝑓) is an even 

function, and the imaginary part 𝑥2(𝑓)is an odd function. Which also corresponds to 

the parity before and after the function transformation in the Hilbert transformation. 

So 

𝑥1(𝑓) =
1

𝜋
𝑃 ∫

𝑥2(𝑓
′)

𝑓′ − 𝑓

∞

−∞

𝑑𝑓′ =
1

𝜋
𝑃 ∫

(𝑓′ + 𝑓)𝑥2(𝑓
′)

𝑓′2 − 𝑓2

∞

−∞

𝑑𝑓′              (2.72) 

=
1

𝜋
𝑃 ∫

𝑓′𝑥2(𝑓
′)

𝑓′2 − 𝑓2

∞

−∞

𝑑𝑓′ +
𝑓

𝜋
𝑃 ∫

𝑥2(𝑓
′)

𝑓′2 − 𝑓2

∞

−∞

𝑑𝑓′              (2.73) 

∵𝑥2(𝑓) is an odd function,   ∫
𝑥2(𝑓

′)

𝑓′2−𝑓2

∞

−∞
𝑑𝑓′ = 0  

∵𝑥1(𝑓) is an even function， 

∫
𝑓′𝑥2(𝑓

′)

𝑓′2 − 𝑓2

∞

−∞

𝑑𝑓′ = 2∫
𝑓′𝑥2(𝑓

′)

𝑓′2 − 𝑓2

∞

0

𝑑𝑓′        (2.74) 

𝑥1(𝑓) =
2

𝜋
𝑃 ∫

𝑓′𝑥2(𝑓
′)

𝑓′2 − 𝑓2

∞

0

𝑑𝑓′              (2.75) 

Correspondingly102, 

𝑥2(𝑓) = −
2𝑓

𝜋
𝑃 ∫

𝑥1(𝑓
′)

𝑓′2 − 𝑓2

∞

0

𝑑𝑓′              (2.76) 

In physics, there is linear KK relationship and nonlinear KK relationship. Here we 

only consider the linear KK relationship. In the physical medium, the linear KK 

relationship also includes61, 103  

1. Response function (reflection spectrum104, 105, transmission spectrum); 

2.Electrical characteristic parameters91, 106 (complex polarizability and complex 

permittivity, electrical impedance); 

3. Magnetic characteristic parameters107; 

4.Optics Characteristic parameters103, 108, 109(complex refractive index and complex 

permittivity, photoconductivity, etc.); 

5. Acoustic characteristic parameters (adiabatic compressibility coefficient, acoustic 

refractive index, scattering function) and other fields of application. 

Here, we only discuss the complex refractive index and complex permittivity of 

substances and some applications in reflection spectrum according to the research 

content. 

The frequency is usually represented by 𝑣 . Compared with Eqs. 2.76 and 2.77 
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without a constant term, when we use KK transform, it is necessary to add a constant 

when calculating the real part 𝑥1(𝑓). This constant means that the tendency at infinity 

of 𝑥1(𝑓) is not 0 but a certain limit value. Which does not affect the KK transform 

itself.  

For the complex permittivity ε𝑟(𝑣) of a substance, it can be expressed as 

ε𝑟(𝑣) = ε𝑟
′ (𝑣) + 𝑖ε𝑟

′′(𝑣)    (2.77) 

Where ε𝑟(𝑣) is equivalent to �̂�(𝑓), and the real part ε𝑟
′ (𝑣) and imaginary part ε𝑟

′′(𝑣) 

are respectively equivalent to 𝑥1(𝑓) and 𝑥1(𝑓). and the corresponding KK relations or 

KK transform can be expressed as 

ε𝑟
′ (𝑣) = 1 +

2

𝜋
𝑃 ∫

𝑣′ε𝑟
′′(𝑣′)

𝑣′2 − 𝑣2

∞

0

𝑑𝑣′              (2.78) 

ε𝑟
′′(𝑣) = −

2𝑣

𝜋
𝑃 ∫

ε𝑟
′ (𝑣′)

𝑣′2 − 𝑣2

∞

0

𝑑𝑣′              (2.79) 

And the complex refractive index �̂�(𝑣) = √ε𝑟(𝑣)  consists of real part 𝑛(𝑣) 

representing refraction and imaginary part 𝑘(𝑣) representing absorption. And real part 

𝑛(𝑣) and imaginary part 𝑘(𝑣) also obey the KK relations. 

�̂�(𝑣) = 𝑛(𝑣) + 𝑖𝑘(𝑣)              (2.80) 

𝑛(𝑣) = 𝑛∞ +
2

𝜋
𝑃 ∫

𝑣′𝑘(𝑣′)

𝑣′2 − 𝑣2

∞

0

𝑑𝑣′              (2.81) 

𝑘(𝑣) = −
2𝑣

𝜋
𝑃 ∫

𝑛(𝑣′)

𝑣′2 − 𝑣2

∞

0

𝑑𝑣′              (2.82) 

The spectrum of 𝑛(𝑣)  and  𝑘(𝑣)  is showed in 

Fig.2.11.                                

               

Fig. 2.11 𝑛(𝑣) and  𝑘(𝑣).                                                                                           

According to the above understanding of the Hilbert transform, it can be found that 

in fact the KK relationship can be considered as a Fourier transform with a difference 

of 90°. The two components that constitute the KK relationship can be considered as 

two mutually orthogonal components, and can be expressed in polar coordinates, that 

is, magnitude and phase.                         
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2.4 Lorentz-Drude Model 

1. The Lorentz Oscillator33, 110 

When an electromagnetic wave expressed by 

�⃗� = 𝐸0
⃗⃗⃗⃗ 𝑒−𝑖(⍵𝑡−𝑘𝑧)              (2.83) 

Here we assumed that 𝑧 = 0, 

�⃗� = 𝐸0
⃗⃗⃗⃗ 𝑒−𝑖⍵𝑡              (2.84) 

Then                                         Fig. 2.12 A mass on a spring. 

  𝑓(𝑡) = −𝑞�⃗� = −𝑞𝐸0
⃗⃗⃗⃗ 𝑒−𝑖⍵𝑡              (2.85) 

In fact, 𝑞 represents the charge of an electron, which can be represented by 𝑒, but in 

order to avoid confusion with Euler's number (𝑒), we still use 𝑞 here. 

Calculate the polarization 𝑝  for a single atom. Which can be expressed in Fig.2.12. 

𝑚𝑥′′(𝑡) + 𝑚𝛾𝑥′(𝑡) + 𝑘𝑥(𝑡) = 𝑓(𝑡)              (2.86) 

For time-harmonic fields: 

𝑥(𝑡) = 𝑋0
⃗⃗⃗⃗ 𝑒−𝑖⍵𝑡              (2.87) 

 and 𝑚 = 𝑚𝑒 

𝑥′(𝑡) = −𝑖⍵ · 𝑋0
⃗⃗⃗⃗ 𝑒−𝑖⍵𝑡 = −𝑖⍵𝑥(𝑡)              (2.88) 

𝑥′′(𝑡) = −⍵2 · 𝑋0
⃗⃗⃗⃗ 𝑒−𝑖⍵𝑡 = −⍵2𝑥(𝑡)              (2.89) 

Eqn. 2.107 can be written as 

(−𝑚𝑒⍵
2 − 𝑚𝑒𝑖𝛾⍵ + 𝑘)𝑥(𝑡) = −𝑞�⃗�               (2.90) 

𝑥(𝑡) =
𝑞

𝑘 − 𝑚𝑒⍵2 − 𝑚𝑒𝑖𝛾⍵ 
�⃗�               (2.91) 

Set ⍵0 = √
𝑘

𝑚𝑒
, which means resonance frequency here. 

𝑥(𝑡) =
𝑞/𝑚𝑒

 ⍵0
2 − ⍵2 − 𝑖𝛾⍵ 

�⃗�               (2.92) 

And finally, the polarization 𝑝  for a single atom is as following: 

𝑝 = 𝑞𝑥(𝑡) =
𝑞2/𝑚𝑒

 ⍵0
2 − ⍵2 − 𝑖𝛾⍵ 

�⃗�               (2.93) 
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Then we can calculate the polarization of the medial in unit volume �⃗�  

�⃗� = 𝑁𝑝 =
𝑁𝑞2/𝑚𝑒

 ⍵0
2 − ⍵2 − 𝑖𝛾⍵ 

�⃗�               (2.94) 

N is the number of atoms per unit volume. 

Meanwhile, the polarization is also defined as �⃗� = ε0𝜒𝑒�⃗�  , ε0  is the vacuum 

permittivity. 

And  

�⃗⃗� = ε0�⃗� + �⃗� = ε0�⃗� + ε0𝜒𝑒�⃗� = ε0(1 + 𝜒𝑒)�⃗�               (2.95) 

 In here, the relative permittivity ε𝑟 is frequency-dependent, also called the dielectric 

function  

ε𝑟 =
ε

ε0
= (1 + 𝜒𝑒)              (2.96) 

Combine Eqs 2.94, 2.95 and 2.96, We can get 

ε𝑟 =
ε

ε0
= 1 +

𝑁𝑞2

𝑚𝑒ε0

1

 ⍵0
2 − ⍵2 − 𝑖𝛾⍵ 

              (2.97) 

Set ⍵𝑝 = √
𝑁𝑞2

𝑚𝑒ε0
 , which is called the plasma frequency12. 

ε𝑟 =
ε

ε0
= 1 +

⍵𝑝
2

 ⍵0
2 − ⍵2 − 𝑖𝛾⍵ 

              (2.98) 

Eqn. 2.98 was called as the classic damped harmonic oscillator model, also called as 

Lorentz model. 

It should notice the relative permittivity ε𝑟(𝑣) is complex as well. The real part of  

ε𝑟
′ (𝑣)  and imaginary part ε𝑟

′′(𝑣)  follows Kramers–Kronig relations as we have 

already discussed.  

𝑣 here means frequency, is the same as ⍵; 𝑣0 is the same as 𝑤0; 𝑆 replaces ⍵𝑝.12 

ε𝑟(𝑣) = ε𝑟
′ (𝑣) + 𝑖ε𝑟

′′(𝑣)              (2.99) 

ε𝑟 can be split from Eqn. 2.99 to 2 parts with real and imag as well.  

ε𝑟(𝑣) = 1 +
𝑆2 (𝑣0

2 − 𝑣2)

 (𝑣0
2 − 𝑣2)2 + 𝛾2𝑣2 

+ 𝑖
S2𝛾𝑣

 (𝑣0
2 − 𝑣2)2 + 𝛾2𝑣2 

              (2.100) 

https://en.wikipedia.org/wiki/Vacuum_permittivity
https://en.wikipedia.org/wiki/Vacuum_permittivity
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Then 

ε𝑟
′ (𝑣) = 1 +

𝑆2 (𝑣0
2 − 𝑣2)

 (𝑣0
2 − 𝑣2)2 + 𝛾2𝑣2 

              (2.101) 

ε𝑟
′′(𝑣) =

S2𝛾𝑣

 (𝑣0
2 − 𝑣2)2 + 𝛾2𝑣2 

              (2.102) 

As showed in Fig 2.11111 ( S2 = 10000, 𝑣0 = 1700, 

and 𝛾 = 10 with the unit 1/𝑐𝑚).    

 

Fig. 2.13 ε𝑟
′ (𝑣) and ε𝑟

′′(𝑣) 

Which also can be used to calculate the real and imag parts of refractive index ε𝑟(𝑣). 

And combine Eqn. 2.103 as following 

�̂�(𝑣) = √μ𝑟ε𝑟 = √ε𝑟(𝑣) = 𝑛(𝑣) + 𝑖𝑘(𝑣)              (2.103) 
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2. Drude model for metals 

In most metal the restoring force is 0 because they have free electrons rather than 

bound by the nucleus. So, we consider    ⍵0 = 0 for metal as the Drude model112. In 

this case, ε𝑟 can be written as  

ε𝑟 = 1 −
⍵𝑝

2

⍵2 − 𝑖𝛾⍵ 
              (2.104) 

3. General equation of Lorentz-Drude model 

Eqn. 2.98 and Eqn. 2.104 are also called Lorentz-Drude model12.  

Lorenz-Drude model can be used to calculate complex refractive index �̂�(𝑣) as well. 

But it is worth noting that Eqn 2.98 and 

Eqn. 2.104 are only used for the 

calculation of ε𝑟  assuming a single 

frequency peak. If a substance has many 

absorption peaks, it needs a lot of 

parameters to determine. For example, in 

the case of N absorption peaks.                                                       

Fig. 2.14 ε𝑟
′ (𝑣) and ε𝑟

′′(𝑣) with N peaks113. 

ε𝑟 = ε𝑟(∞) + ∑
⍵𝑝,𝑗

2

⍵0,𝑗
2 − ⍵2 − 𝑖⍵𝛾𝑗 

𝑁

𝑗=1

              (2.105) 

In which,  ε𝑟(∞) is the contribution of all at higher wavenumber situated oscillators 

for infinite wavelength, i.e., zero wavenumber. 

Sometimes it is also written as 

ε𝑟 = ε𝑟(∞) + ∑
𝑆𝑗

2

𝑣𝑗
2 − 𝑣2 − 𝑖𝑣𝛾𝑗

𝑁

𝑗=1

              (2.106) 

The above two formulas express the same meaning. Spectrum as showed in Fig. 

2.14 and corresponding parameters values are from the reference113. 

Both the Lorentz-Drude model and KK transform can be used to relate the real and 

imaginary parts of ε𝑟  and �̂�(𝑣) . The difference is that the KK can be used for 

continuous calculations, while the Lorentz-Drude model cannot. 
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2.5 Simulation and Correction 

With 𝑛1 = 2.41 , and applied 𝑛(𝑣)  and 𝑘(𝑣)  of Toluene as complex 𝑛2 . And 

changing 𝜃1 within 0°-90°, the simulation spectrums within 650-800cm-1 are showed 

in Fig.2.15A. After considering 𝑛𝑇𝑜∞ = 𝑛𝑇𝑜(4000 𝑐𝑚−1)  = 1.4707, it is not difficult to 

find by Eqn.1.99 that 𝜃𝑐 ≈ 37.61° . Which perfectly explained the abnormality of 

absorption spectrum below 40°. It’s obviously related to the real part 𝑛(𝑣)  of the 

complex refractive index of Toluene (To), but it should be noted that, for ATR, the peak 

position values of the absorption spectrum and the complex refractive index spectrum 

are not completely consistent. There are a series of references for specific calculation 

process. For a better comparison, we introduce the absorption spectrum obtained under 

the experimental conditions with 𝜃1 = 45°.  

Fig. 2.15 Comparison of the simulation spectrum with the incident angle within 0°-90° 

within 650-800cm-1 (A); Comparison of the simulation spectrum with the incident 

angle lower than the critical angle and experiment spectrum with 𝜃1 = 45° , 

corresponding corrected spectrum by KK transform within 650-800cm-1 (B). 

Indeed, if the incident angle falls below the critical angle or even when the 

distortion peak near the critical angle exhibits a red shift compared to the normal peak 

observed with an incident angle higher than the critical angle, correction is imperative. 

However, it's essential to clarify a common misconception. The distortion peak 

primarily arises from the refractive part, namely the real part 𝑛(𝑣), which is commonly 

referred to as anomalous dispersion. Contrary to common belief, the distorted spectrum 

primarily encompasses the refraction property rather than the absorption property. 

Consequently, these distorted peaks necessitate transformation into normal peaks 

(A) (B) 
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through methods such as Kramers-Kronig (KK) 44, 97, 98 transformation. The corrected 

curves illustrating this transformation are depicted in Fig. 2.15B. This corrective 

approach ensures that the refractive properties inherent in the distorted peaks are 

appropriately accounted for, leading to the generation of accurate spectra suitable for 

subsequent analysis and interpretation. 

If we consider the raised portion of the original spectrum as an absorption peak, 

the spectrum will appear red-shifted compared to the experimental peak observed at 

𝜃1 = 45° . Conversely, some papers treat the recessed portion in Fig. 1B as another 

absorption peak. However, when the experimental value is taken as the reference, the 

corrected peak exhibits a noticeable blue shift instead of a red shift. It's important to 

note that the concave and convex sections of the original spectrum can be interpreted 

as the real part of the spectrum, rather than representing two distinct absorption peaks 

(though this simplification may not be entirely accurate and is primarily for ease of 

understanding). This interpretation becomes apparent when the spectrum is obtained 

directly through KK transformation to yield a symmetrical spectrum. 

Fig. 2.16 presents information from spectrograms at all incident angles with correct 

positioning. This comprehensive visualization aids in understanding the spectral 

characteristics across different incident angles, providing valuable insights for further 

analysis and interpretation.  

Fig. 2.16 Comparison of the original 

spectrum with the incident angle higher 

than the critical angle and the corrected 

spectrum with the incident angle lower 

than the critical angle. 

As depicted in Fig. 2.16, when the 

incident angle surpasses the critical angle, 

a reduction in the incident angle results in 

a gradual redshift of the peak position alongside a gradual increase in peak height. 

Conversely, when the incident angle falls below the critical angle, the peak position 

continues to redshift while the peak height gradually decreases. However, it's crucial to 

note that the corrected peak, relative to the experimental peak, exhibits a blue shift 

rather than a red shift. 

Regarding scenarios near the critical angle, further insights can be gleaned from 
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Milan's book1, particularly in Fig. 9.2. 

Nevertheless, it's pertinent to acknowledge that conventional approaches, such as 

simple KK transformation, may not yield optimal calibration curves when dealing with 

the curve of 𝑛(𝑣)  and 𝑘(𝑣)  mixing and distortion. This limitation is particularly 

pronounced in scenarios involving multiphase mixing, such as the spectrum of high 

refractive index solid-liquid mixing. Previous articles have elucidated the principles 

and simulations of spectrum distortion, highlighting the inadequacy of simple KK 

transformation in achieving a perfect calibration curve.  

Fig. 2.17 Spectra of samples in toluene and pure toluene(A) and partial spectra within 

650-800cm-1 (B). 

The original spectra, as depicted in Fig. 2.17, highlight a critical consideration: to 

mitigate the influence of the Internal Reflection Element (IRE) itself on the spectrum, 

all mixture spectra in this study have been corrected within the range of 1775-2661 

𝑐𝑚−1 . The significant negative peak observed within this interval stems from the 

depression caused by the absorption of diamond, a phenomenon detailed in previous 

articles. 

It is evident that none of the peak positions illustrated in Fig. 2.17 can be deemed 

accurate. Similar to the observations in Fig. 2.17B, the convex portions of the 

uncorrected spectrum exhibit a red shift when compared to the peak of the pure solvent. 

This discrepancy underscores the necessity for correction methodologies to account for 

spectral distortions arising from factors such as IRE absorption and refractive index 

(A) (B) 
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variations within the sample. 

Fig. 2.18 Spectra in Fig.3 after correcting by KK transform (A) and partial spectra 

within 650-800cm-1 (B). 

As depicted in Fig. 2.18, even after applying the KK transformation, the corrected 

spectrum retains the influence of refraction peaks. This phenomenon arises due to the 

complex nature of the distortion observed in the original spectrum, which stems from a 

combination of refraction and absorption phenomena within the solid-liquid mixture. 

When simple KK transformation is applied, the absorption peaks present in the 

original spectrum are converted into refraction peaks. However, this transformation 

does not fully eliminate the refraction effects, leading to interference in the resulting 

spectrum. This underscores the intricacies involved in correcting distorted spectra and 

highlights the need for more sophisticated correction methodologies that can effectively 

address the combined effects of refraction and absorption. 

In this case, the method used by Gökçen Tek was adopted114. Firstly, select the 

interval to be corrected. Secondly, correct the baseline. Thirdly, using inverse fast 

Fourier transformation (IFFT)79 and check for the most symmetric line shape of the 

peak by changing ϕ from −𝜋 to 𝜋, which means phase index from -314 to 314, to get 

the best phase index ϕ𝑏  with minimum of the difference between the absorption peaks 

at equal distances from the center frequency after fast Fourier transformation (FFT)53. 

Finally, use Eqn.12 to get the final corrected spectrum. 

𝐴ϕ𝑏
(𝑤) = 2 ∗ 𝑟𝑒𝑎𝑙(𝐴(𝑤)𝑒𝑖ϕ𝑏 )              (2.107) 

The method described above addresses the challenge of separating the mixed 

absorption peak from the real and imaginary parts of the spectrum. Originally proposed 

to resolve peak distortion resulting from reflection on the surface of a metal layer, this 

approach proves applicable to the context of this paper as well. The calibration results 

(A) (B) 
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obtained through this method are illustrated in Fig.2.19. 

Fig. 2.19 Spectra within in Fig.4 after correcting method by Gökçen Tek (A) and 

specific dashed peak shift (B). 

From Fig. 2.19, it becomes apparent that the absorbance peak generally exhibits a 

blue shift relative to the Toluene peak after correction. However, it's noteworthy that 

many scientific researchers erroneously conclude a red shift in such spectra analysis, 

neglecting the crucial aspect of correction. This oversight compromises the rigor of 

their conclusions, particularly when analyzing intermolecular interactions. 

The distortion observed in the spectrum primarily stems from light transmission 

through the medium, influenced by the complex refractive index. Therefore, attributing 

this distortion to intermolecular interactions is inherently flawed. In conjunction with 

Fig. 2.17, it can be inferred that the distortion in the original spectrum correlates with 

the magnitude of the real part of the composite refractive index of the mixture. 

Consequently, a greater distortion in the original spectrum tends to manifest as a more 

pronounced blue shift in the corrected spectrum. 

The challenge with this method is that even within the same spectrum, the degree 

of phase delay can vary across different wavenumbers. This can be likened to the 

varying depth of an evanescent wave. 

The amplitude of the evanescent wave decays to 1/𝑒 of its maximum value at a 

distance 𝑑𝑝 in Eqn. 1.100 from the interface. 

𝑑𝑝 =
1

2𝜋𝑣√𝑛1
2𝑠𝑖𝑛2𝜃1 − 𝑛2

2
         (1.100) 

Spectral distortion can also occur when the incident angle is near the critical angle in 

2D IR spectroscopy.115 However, the focus in 2D IR is typically on vibrations within a 

narrower wavenumber range, allowing for the phase delay at the highest symmetrical 

(A) 
(B) 
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peak to be used as a representative value for other peaks. But this approach becomes 

problematic when dealing with broader wavenumber spans and varying degrees of 

distortion, such as the mixed distortion peak of Carbon and Toluene. In these cases, 

using the phase delay from the highest distortion peak for the entire spectrum is not 

suitable. 

When correcting the baseline, narrower ranges with fewer variations are easier to 

manage, while a broader spectrum with complex distortions, including concave and 

convex lines, poses greater difficulty. The simple baseline correction method used in 

the Gökçen Tek’s method becomes insufficient for correcting distorted spectra across 

the entire wavenumber range. To address this, a more intricate baseline correction 

approach is needed116. Building upon the Gökçen Tek correction method, with the 

integration of PSD52, 66, 67, 73, 75, 117, a more globally applicable correction method was 

developed. 

The entire correction method involves two main steps: 

1. Calibrate the baseline across the entire spectrum as in Fig.2.20A. 

2. Adjust ϕ (phase shift) from −𝜋 to 𝜋, based on Eqn.12, as shown in Fig. 2.20B.  

This allows for finding the maximum and minimum values for each wavenumber. 

The difference between these values provides a general correction, leading to the final 

calibrated spectrum as in Fig.2.20C. 
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Fig. 2.20 Comparison between distorted spectrum of S1To and the spectrum of S1To 

after correcting baseline(A); Changing ϕ  from −𝜋  to 𝜋  of spectrum of S1To after 

correcting baseline(B); Comparison between distorted spectrum of S1To and the 

spectrum of S1To after correcting by using max total method (C); Comparison between 

the spectrum of S1To after correcting with 2 methods and Toluene(D). 

It's important to note that while this method can determine a more accurate peak 

position, it may not yield the most accurate peak shape. This is because this method 

effectively generates multiple phase delay envelopes, allowing for greater flexibility in 

correction but potentially leading to less precise peak profiles. Fig. 2.20D displays the 

corrected spectra from two different correction methods, alongside the spectrum for 

pure Toluene for comparison.  

 

Conclusions 
In this study, the calibration of pure solvent spectra serves as the starting point for 

employing various Kramers-Kronig (KK) transformation techniques to rectify ATR 

spectra originating from high refractive index carbon and solvent mixtures. To correct 

the distortion in the spectrum of a mixture, we accounted for differences in phase delay 

(A) (B) 

(C) 
(D) 
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across various wavenumbers. By applying Inverse Fast Fourier Transform (IFFT) and 

Fast Fourier Transform (FFT), combined with techniques from the Phase Sensitive 

Detection (PSD) process, we achieved one-time correction of the entire spectrum. This 

integrated approach addresses the complexities arising from phase delay variations, 

allowing for a comprehensive and efficient correction of distorted spectra in a single 

step, improving the accuracy of spectral analysis and reducing the need for segmental 

corrections. Through this calibration process, correct spectra are derived and 

subsequently analyzed from multiple perspectives. The paper highlights that the 

distortion of spectra, particularly prominent at low wavenumbers and regions of high 

absorption, is attributed to the refraction and absorption phenomena inherent in solid-

liquid mixtures. These effects are encapsulated by the real and imaginary components 

of the complex refractive index, respectively. Notably, while the original spectrum 

exhibits a redshift in absorption relative to the solvent, the calibrated spectrum 

undergoes a blue shift, with the magnitude of this shift positively correlated with the 

absorption intensity of the pure solvent spectrum. Furthermore, the degree of spectral 

distortion correlates with the prominence of the blue shift. This research bears critical 

significance not only for spectral correction and the acquisition of accurate spectra but 

also for advancing our understanding of substance properties and solid-liquid 

interactions. 

Moreover, by considering both Specular Reflectance (SR) and ATR, representing 

internal and external reflection, respectively, through the lens of Fresnel's law, a novel 

perspective emerges. It is discerned that the partial or total absence of total internal 

reflection within the experimental wavenumber range (due to incident angles falling 

below the critical angle or refractive indices exceeding the critical refractive index) 

constitutes Specular Reflectance-induced Internal Reflection (SRIR). Ultimately, 

employing diverse KK transformation methodologies facilitates the derivation of 

correct spectra, thereby significantly broadening the applicative scope of ATR and 

laying a solid groundwork for the accurate characterization of high refractive index 

materials.  
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3. From Fourier Transform to Deep 

Learning 

3.1 Extension of Fourier Transform 

1. Short Time Fourier Transform (STFT) 

The Fourier transform (FT)57 loses the information of the time domain part in the 

process of converting the time domain to the frequency domain. When both the 

frequency domain and the time domain information are needed, we can use the 

Windowed Fourier transform, also called Short 

Time Fourier Transform (STFT)118-120. 

STFT can be described as follows 

𝐺(⍵, 𝑢) = ∫ 𝑓(𝑡)𝑔(𝑡 − 𝑢)𝑒−𝑖⍵𝑡𝑑𝑡
∞

−∞

     (3.1) 

Where 𝑔(𝑡 − 𝑢) is the window function.                Fig. 3.1 STFT                                 

The short-time Fourier transform is the Fourier transform multiplied by a window 

function. This can also be considered as dividing the time signal into different short 

signals of the same time, and then performing Fourier transform in each short time to 

obtain the spectrum signal in the corresponding time. This also embodies time-varying 

information in the transformations that reveal the spectrum. 

Since the window length is fixed, STFT has the problem of single time resolution. 

To solve it we introduce the wavelet transform. 

2.Wavelet Transform121 

The wavelet122-125 can be expressed by the following formula 

𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 (

𝑡 − 𝑏

𝑎
)     𝑎, 𝑏 𝜖 ℝ              (3.2) 

where 𝑎, 𝑏 are scale and position parameters respectively. 

There are different kinds of wavelets we can apply. For 

example, Morlet Wavelet126-128, is given by: 

𝜓(𝑡) = 𝑒−𝑖⍵𝑡𝑒−
𝑡2

2 = 𝑘0 · cos(⍵𝑡) · 𝑒−
𝑡2

2               (3.3)                          

                                                                                                   

Fig. 3.2 Morlet Wavelet 
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Wavelet Transform has different resolutions at different times when analyzing signals. 

It provides low time resolution at high frequencies and high time resolution at low 

frequencies. It can also be considered as the Fourier transform that is multiplied by a 

window, but the window at this time is not fixed, and the window is inversely 

proportional to the frequency.  

Wavelet transform can be divided into continuous and discontinuous wavelet 

transform. In what follows, we will use continuous wavelet transform to illustrate the 

relationship between time resolution and frequency resolution. 

2.1 Continuous Wavelet Transform (CWT) 

The Continuous Wavelet Transform(CWT)127, 129 is given by Eq. 3.4 

𝐶𝑊𝑇(𝑎, 𝑏) = ⟨𝑓, 𝜓𝑎,𝑏⟩ =
1

√𝑎
∫ 𝑓(𝑡) · 𝜓∗ (

𝑡 − 𝑏

𝑎
)𝑑𝑡

∞

−∞

              (3.4) 

∆𝑡 · ∆⍵ ≥
1

2𝜋
              (3.5) 

∆𝑡, ∆⍵ can be treated as time resolution and frequency resolution respectively, 𝑓(𝑡) 

is the signal. This means that when we get very high frequency resolution, the 

corresponding time resolution is low, and when we have high time resolution, the 

frequency resolution is low. 

Just like the Fourier transform, the wavelet transform also has a corresponding 

inverse transform. For a continuous wavelet transform, its inverse is a continuous 

wavelet transform. By combining CWT and ICWT we can use them for spectral 

analysis of signals or spectrum in MATLAB, python and so on. Of utmost significance 

is the utilization of Continuous Wavelet Transform (CWT) coefficients in the form of a 

scalogram, which can serve as input data for a deep neural network used in signal 

classification tasks.130 

CWT also has the problem of excessive calculation. 

2.2 Discrete Wavelet Transform（DMT） 

The wavelet is discrete in Discrete Wavelet 

Transform(DMT)131. That is, the scale and shift 

parameters are discretization as following. 

𝜓𝑚,𝑘(𝑡) =
1

√2𝑚 𝜓 (
𝑡−𝑘2𝑚

2𝑚 )   𝑚, 𝑘 𝜖 ℝ    (3.6) 

    Fig. 3.3 Decomposing data process. 

Where 𝑚, 𝑘 are the scale and shift parameters respectively.                             
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Correspondingly, Discrete Wavelet Transform can be written as                          

𝐷𝑊𝑇(𝑚, 𝑘) = ⟨𝑓, 𝜓𝑚,𝑘⟩ =
1

√2𝑚
∫ 𝑓(𝑡) · 𝜓∗ (

𝑡 − 𝑘2𝑚

2𝑚
) 𝑑𝑡

∞

−∞

            (3.7) 

Eqn. 3.7 means decomposing the data into high and low frequencies of equal length 

each time in the frequency domain, which is also similar to having two equal-length 

window samples at each node. This is illustrated in Fig. 3.3. 

Just like convolution in Fourier transform, convolution in time domain corresponds 

to product in the frequency domain. The convolution of the wavelet and the original 

function in the time domain is also the product of the corresponding frequency domain, 

which is why the discrete wavelet transform can achieve high-pass and low-pass 

filtering. 

Why do I introduce so many contents that seem to have nothing to do with my 

research? Although I have not directly applied the above data processing methods in 

my research, these are the bridges connecting Fourier transform and deep learning. 

Because convolution, as a very useful mathematical method, which not only plays a 

significant role in traditional calculations and signal processing, but, and even more 

importantly, it plays a pivotal role in deep learning algorithms. 

Whether it is windowed Fourier transform or wavelet transform, this is a method 

of extracting part of the information in the data through convolution using a window 

function, or a method similar to a window function. And the convolutional neural 

network algorithm takes this method to the extreme.  

In short, STFT derives the characteristics of data by using window functions of 

equal length, and WT is a means to obtain the characteristics of data by using window 

functions of different lengths. The size change of the 𝜓 function can be regarded as a 

way to obtain different data characteristics. It is only one kind of 𝜓 that can be selected 

each time in wavelet transform, which means that the characteristics of each selected 

data are also of a specific type. That’s why Wavelet Scattering can be thought as an 

equivalent to a convolutional neural network130. The convolutional neural network uses 

different window functions to obtain different characteristics of the data through 

convolution and learns during the training process.  
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3.2 Convolutional Neural Network (CNN)  

1. Introduction of CNN132, 133 

 
Fig. 3.4 Calculation program of CNN134 

The algorithm of CNN132, 133, 135-138, as shown in Fig.3.4, is composed of two parts, 

feature leaning and classification139. Each of these components will be expounded upon 

separately. 

Within feature learning, convolution plays a pivotal role.  

We can regard the convolution kernel as a wavelet in wavelet transform. But it is 

worth noting that unlike the wavelet transform, the similar wavelet here is two-

dimensional just like 2D Fourier transform what we’ll introduce in Chapter 5.1 (of 

course, there are also data with one-dimensional or three-dimensional, here only two-

dimensional image data is used as an example). As showed in Fig. 3.5, and the 

convolutional kernel size is fixed as 3*3 (or 5*5 or other sizes). Convolution kernel is 

used to extract the main information of the data by finding the similarity between the 

convolution kernel and the data. The difference between the convolution kernel in CNN 

and the Fourier convolution will be described 

in detail in section 2. Different features of the 

data are obtained by different types of 

convolution kernels, such as horizontal 

stripes, vertical stripes or circles in the 

picture, etc. Which is also the most important 

part of the deep learning black box properties.  

Fig. 3.5 Convolution with a 3*3 kernel.134 
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The Rectified Linear Unit (ReLU)140 function selectively activates data based on 

convolution-derived outcomes, as illustrated in Fig. 3.5.                            

The subsequent step involves pooling, aiming to acquire locally optimal and 

representative data from the output of a convolution layer using diverse methods such 

as maximum141, 142, minimum, or average143 value computation144. The amalgamation 

of these pooled data points results in the creation of a new two-dimensional dataset.  

This iterative process is applied to the new dataset, extracting fundamental features 

from the lower layers. Diverse results are then combined to obtain more intricate 

features, capturing nuanced global information, as depicted in Fig. 3.6, which illustrates 

the calculation program of feature learning. 

Fig. 3.6 Calculation program of feature leaning.134 

After the convolutional layer has fully obtained the data information, we next 

introduce the classification. 

The global and local information are combined by full connected layer through 

mapping distributed features to sample label space. In short, all the data obtained in the 

feature learning step are integrated into one data as output to achieve the screening 

purpose145. 

The Softmax function133, 138 is employed to map the output of the preceding step to 

the data space of (0,1), thereby enhancing the accuracy of classification.  

Through these aforementioned steps, the final result, whether it pertains to data 
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classification or labeling, is obtained. 

2. Convolutions in Convolutional Neural Networks 

In the Fourier transform, convolution is defined as follows 

𝑓(𝑡) ∗ 𝑔(𝑡) = ∫ 𝑓(𝑡 − 𝜏)𝑔(𝜏)𝑑𝜏 =
∞

−∞

∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
∞

−∞

            (3.8) 

The above definition refers to the convolution in the continuous Fourier transform, 

and its application is mainly in the time domain and frequency domain transform. 

But in the neural network algorithm, it is used less and more in one domain, so it 

is also written as 

(𝑓 ∗ 𝑔)(𝑛) = ∫ 𝑓(𝑛 − 𝜏)𝑔(𝜏)𝑑𝜏 =
∞

−∞

∫ 𝑓(𝜏)𝑔(𝑛 − 𝜏)𝑑𝜏
∞

−∞

            (3.9) 

Then for the discrete Fourier transform, the convolution is defined as 

(𝑓 ∗ 𝑔)(𝑛) = ∑ 𝑓(𝜏)𝑔(𝑛 − 𝜏)

∞

𝜏=−∞

            (3.10) 

In the Fourier transform, convolution in the time domain corresponds to product in 

the frequency domain. We have mentioned that a time-domain signal 𝑓(𝑡)  can be 

filtered after being convolved with another specific function 𝑔(𝑡). In fact, the same is 

true for the neural network algorithm. After the original data 𝑓(𝑛) is convoluted with 

a specific 𝑓(𝑛), since some data in 𝐹(𝑓) that do not conform to the type of 𝐹(𝑔) 

will become is 0 , the obtained new (𝑓 ∗ 𝑔)  means that a certain part of 𝑓(𝑛)  is 

extracted to meet the characteristics of 𝑔(𝑛). 

The above is for the case of one-dimensional data. For two-dimensional discrete 

convolution, it is defined as 

(𝑓 ∗ 𝑔)(𝑚, 𝑛) = ∑ ∑ 𝑓(𝑖, 𝑗)𝑔(𝑚 − 𝑖, 𝑛 − 𝑗)
𝑗𝑖

            (3.11) 

𝑓  refers to the input data matrix, and 𝑔  is the weight coefficient matrix, which is 

commonly referred to as the convolution kernel. 

𝑓 is an 𝑚 ∗ 𝑛 pixel matrix, and 𝑔 is a convolution kernel of 𝑥 ∗ 𝑥 (𝑥 is generally an 

odd number). 

After 𝑓(𝑚, 𝑛) is convoluted with different 𝑔(𝑥, 𝑥), different types of information in 

𝑓(𝑚, 𝑛) can be extracted, such as horizontal texture, vertical texture, circular texture 
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and so on. 

Hence, the operation performed by a convolutional neural network is essentially 

analogous to applying a spatial filter in image processing. Nevertheless, it's important 

to emphasize that the convolution kernel and the original matrix are not directly 

multiplied; instead, each corresponding element is computed after a 180° rotation 

around the central element.  

In CNN, we first consider the local information independently at the bottom layer 

and then use the most representative local data to obtain a new round of features on the 

basis of obtaining obvious local features. Finally, consider the big picture. This 

approach is very beneficial for spatial information processing, which is why we use 2D 

data to explain CNN. However, this method does not take into account the order of local 

data, so CNN is not so suitable when it comes to considering the impact of previous 

data on subsequent data, such as text data, voice data, and so on. However, language 

translation or speech recognition, emotional classification of different texts, music 

generation, etc. all put new requirements on the algorithm, so we need to introduce a 

new deep learning algorithm145, which is the recurrent neural network (RNN) and its 

enhanced Long Short-Term Memory (LSTM)146 algorithm to process the sequence 

model. 

Of course, we are also very curious, how does the convolution kernel meet different 

needs to find the most suitable features? Because we mainly want to understand CNN 

in combination with convolution in this part, and this part involves the parameter update 

problem in training neural network, we will explain it in detail in the next chapter in 

conjunction with the recurrent neural network (RNN) algorithm. 
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3.3 The Recurrent Neural Network (RNN) 

Before introducing The Recurrent Neural Network (RNN)147-153 algorithm, I would 

like to explain some basic details.  

A. The Sequence Model 

A model that involves sequential data either as its input or output is referred to as a 

sequential model151, 154. We will take Recurrent Neural Network (RNN) as an example. 

For more detailed course explanations, please refer to Andrew Ng’s Deep Learning 

Course, other relative papers or books155. 

B. Notation 

The language was first digitized in the lexicon, and each word has a specific position 

in the lexicon. We use N data to represent N words. Each word is represented by an N-

dimensional vector156 (which facilitates subsequent matrix calculations). 

When we need to translate a sentence, we first need to divide the words in the 

sentence according to their step in the sentence (rather than the position in the 

dictionary), usually represented by 𝑡. 

C. Activation function 

The activation function determines whether a neuron should be activated 

highlighting whether the calculation result should be retained, and how it should be 

retained and passed down. Some common activation functions are shown in Table 3.1. 

Table. 3.1 Common Activation Functions154, 157, 158 

Name Relu  Sigmoid Tanh Softmax 

Eqn. 
𝑓(𝑥) = {

0    (𝑥 ≤ 0)
𝑥    (𝑥 > 0)

 𝑓(𝑥) =
1

1 + 𝑒−𝑥
 𝑡𝑎𝑛ℎ(𝑥) =

1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
 𝑆𝑖 =

𝑒𝑖

∑ 𝑒𝑖
𝑗

 

Plot 

   

 

The Softmax function takes the layer’s output and transforms it into a value within 

the range of (0,1) while also ensuring normalization, where the sum of all elements 

equals 1154. This allows it to be directly interpreted as a probability distribution, and the 

category with the highest probability is chosen as the prediction target. 
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D. Cross Entropy159 

𝐶𝐸 = −∑𝑦𝑖𝑙𝑜𝑔�̂�𝑖

𝑦𝑖

           (3.12) 

𝑦𝑖 is the real probability distribution, �̂�𝑖 is the predicted probability distribution, 𝑙𝑜𝑔 

is usually 𝑙𝑜𝑔2 in the algorithm. 

In the classification problem, because only one of the classification labels has a 

true value of 1, and the rest are 0, the cross-entropy can also be written as 

𝐶𝐸 = −𝑙𝑜𝑔�̂�𝑖           (3.13) 

For the dichotomous case, which can also be written as 

𝐶𝐸 = −𝑦𝑖𝑙𝑜𝑔�̂�𝑖 − (1 − 𝑦𝑖)log (1 − �̂�𝑖)           (3.14) 

And in the algorithm, cross entropy is usually used as a standard logistic regression 

loss function, so it is also called cross entropy loss function (Cross Entropy Loss160). In 

Recurrent Neural Network (RNN), 𝑦𝑖 refers to the real label 𝑦⟨𝑡⟩ at 𝑡 step, and �̂�𝑖 

to the calculated predicted label �̂�⟨𝑡⟩ at 𝑡 step. 

1. The Recurrent Neural Network (RNN)147, 149-152, 154, 161  

Similar to CNN, RNN also performs calculations at each position in sequence, but 

instead of using the local small window of convolution, it uses shared parameters to 

calculate the hidden state 𝑎⟨𝑡−1⟩  and the input data 𝑥⟨𝑡⟩  of the current step for 

calculation. Just like when people are reading, RNN is also processing information in 

order. For example, RNN is processing a piece of data at the 𝑡 step, which summarizes 

all the information collected by 𝑡 step, as shown in Fig. 3.7. 

The specific calculations involved are below 

𝑎⟨𝑡⟩ = tanh (𝑊𝑎𝑥𝑥
⟨𝑡⟩ + 𝑊𝑎𝑎𝑎

⟨𝑡−1⟩ + 𝑏𝑎)           (3.15) 

�̂�⟨𝑡⟩ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑦𝑎𝑎
⟨𝑡⟩ + 𝑏𝑦)           (3.16) 

Where 𝑊𝑎𝑥 , 𝑊𝑎𝑎 , 𝑏𝑎  , 𝑊𝑦𝑎 , 𝑏𝑦  are weight and 

biases respectively, and are the same at each step.           Fig. 3.7 RNN cell 

𝑎⟨𝑡−1⟩  is the hidden state at 𝑡 − 1  step, 𝑥⟨𝑡⟩  is the input value at 𝑡  step, 𝑎⟨𝑡⟩  is the 

hidden state at 𝑡 step, 𝑎⟨0⟩ = 0, �̂�⟨𝑡⟩ is the output value at t step. 

For the convenience of calculation, we usually use matrix notation in which Eqn. 

3.15 becomes 

𝑎⟨𝑡⟩ = tanh ([𝑊𝑎𝑥 ⋮ 𝑊𝑎𝑎][𝑥
⟨𝑡⟩, 𝑎⟨𝑡−1⟩] + 𝑏𝑎)           (3.17) 

Or 
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𝑎⟨𝑡⟩ = tanh ([𝑊𝑎𝑥 ⋮ 𝑊𝑎𝑎][
𝑥⟨𝑡⟩

𝑎⟨𝑡−1⟩] + 𝑏𝑎)           (3.18) 

Sometimes [𝑊𝑎𝑥 ⋮ 𝑊𝑎𝑎] can also be written as 𝑊𝑎. 

In RNN, 𝑎⟨𝑡−1⟩  represents the network's memory of 𝑡 − 1  and previous 

information. Then Eqn. 3.17 means that the calculation result of the hidden layer 𝑎⟨𝑡⟩ 

contains the input 𝑥⟨𝑡⟩ of 𝑡 step and the information of 𝑡 − 1 step and before. And 

Eqn. 3.16  means that the output �̂�⟨𝑡⟩  at 𝑡  step is determined according to the 

information contained in the hidden layer 𝑎⟨𝑡⟩ , which means that �̂�⟨𝑡⟩  not only 

contains the current step. The information of 𝑡 also includes all the information before 

𝑡  step, so the network will remember the information before 𝑡  and apply it to the 

current output �̂�⟨𝑡⟩.  

At the same time, the hidden layer 𝑎⟨𝑡⟩ will be used as the input of 𝑡 + 1 step to 

participate in the calculation of the next step, which means that the network processes 

the information at 𝑡 + 1  step based on the information summarized at 𝑡  step, and 

updates the hidden layer 𝑎⟨𝑡+1⟩, and get the output �̂�⟨𝑡+1⟩ of 𝑡 + 1 at the same time; 

which repeats, as shown in Fig. 3.8. 
 

Fig. 3.8 RNN over multiple time steps. 

We will now explain the back propagation, that is, the problem of parameter update. 

Through the initial values of the calculation parameters 𝑊𝑎𝑥, 𝑊𝑎𝑎, 𝑏𝑎 , 𝑊𝑦𝑎, 𝑏𝑦, 

we get the calculation output value corresponding to each step from   �̂�⟨1⟩  to �̂�⟨𝑡⟩ . 

However, they are expectedly deviate from the true output values from  �̂�⟨1⟩ to �̂�⟨𝑡⟩.  

Then it’s necessary to use the Cross Entropy Loss introduced before to calculate 

the loss function between the calculated value and the actual value.   
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Fig. 3.9 Calculation process of 

loss function  

The genesis of these loss 

functions can be traced back to 

inaccuracies in the initial parameter 

settings and the ongoing updates 

during computation. To mitigate this, we employ a backpropagation approach, 

reiteratively utilizing the loss function to discern the impact of each calculation 

parameter on the output value. This involves calculating the partial derivatives of the 

Cross Entropy Loss with respect to each parameter. Subsequently, these derivatives 

guide the update process for the calculation parameters, allowing for a refined 

adjustment that aligns with the optimization goal. In essence, the continuous 

backpropagation of the loss function serves as a corrective mechanism, enhancing the 

precision of the model through systematic parameter updates, as shown in Fig. 3.9. 

Then forward step again to get the new output value from  �̂�⟨1⟩ to �̂�⟨𝑡⟩, calculate the 

loss function again, and backpropagate to update the calculation parameters. Repeat 

this until the calculated output value consistent with the actual value is obtained. This 

is how the calculation parameters are updated, and finally can complete the task we 

need. 

To summarize, we set the initial value of the random parameter, use RNN algorithm 

to obtain the calculated output value, and then compare the actual value with the 

calculated value, and then reverse the influence of the initial value on the calculated 

value, update the parameters, calculate again, and continue to iterate until a satisfactory 

output value is finally obtained. This process is similar to CNN, RNN, and Transformer. 

There are many different and more complex types of RNNs162, such as multi-layers 

RNN that adds more neural networks before the output layer154, or there are 

bidirectional RNNs162, 163 in one program that read data from two directions , etc. The 

above two forms of RNN can well solve the problem of RNN data weight imbalance, 

which can be stated as, previous data can have an impact on subsequent data, while the 

data at the rear cannot affect the previous data. 

RNN has a vanishing gradient164 and exploding gradient165 problems166, 167. 

The term "exploding gradient" signifies that parameter values grow excessively 

large, potentially leading to overflow and resulting in non-numeric values165. This 
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problem can be addressed through gradient pruning and clipping, which involves 

scaling the gradients when they surpass a predefined threshold. 

Vanishing gradient phenomenon164, 166 occurs as the network's depth increases, 

causing the impact of the initial hidden layer on the output of subsequent computations 

to diminish progressively. In the process of backpropagation, we use the chain rule to 

obtain partial derivatives to update the calculation parameters. Which also means that 

the weight update of the first few layers will become so small that the previous neural 

network cannot work, which is the problem of gradient disappearance166. In the natural 

language model, RNN is not good at processing long sentences, and the previous 

information will be forgotten after a few cycles. 

The gradient problem can be solved by 

introducing GRU168, 169 and LSTM architectures. 

Our focus here is on LSTM153, 154. 

2. Long short-term memory (LSTM)146, 153, 170 

LSTM cell is shown in Fig. 3.11. Compared 

with RNN, LSTM only has one more long-term 

memory. 

(For specific applications, see chapter 3.5. In 

which, the introduction of the following LSTM 

cells is the same.)                  

Fig. 3.10 Comparison between RNN and LSTM 

      𝛤𝑓
⟨𝑡⟩

= 𝜎(𝑊𝑓[𝑎
⟨𝑡−1⟩, 𝑥⟨𝑡⟩] + 𝑏𝑓)    (3.19)  

𝛤𝑢
⟨𝑡⟩

= 𝜎(𝑊𝑖[𝑎
⟨𝑡−1⟩, 𝑥⟨𝑡⟩] + 𝑏𝑖)     (3.20) 

�̂�⟨𝑡⟩ = 𝑡𝑎𝑛ℎ(𝑊𝑐[𝑎
⟨𝑡−1⟩, 𝑥⟨𝑡⟩] + 𝑏𝑐)  (3.21) 

𝑐⟨𝑡⟩ = 𝛤𝑓
⟨𝑡⟩

· 𝑐⟨𝑡−1⟩ + 𝛤𝑢
⟨𝑡⟩

· �̂�⟨𝑡⟩      (3.22) 

𝛤𝑜
⟨𝑡⟩

= 𝜎(𝑊𝑜[𝑎
⟨𝑡−1⟩, 𝑥⟨𝑡⟩] + 𝑏𝑜)     (3.23) 

𝑎⟨𝑡⟩ = 𝛤𝑜
⟨𝑡⟩

· 𝑡𝑎𝑛ℎ (𝑐⟨𝑡⟩)            (3.24) 

�̂�𝑝𝑟𝑒𝑑
⟨𝑡⟩

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑦𝑎
⟨𝑡⟩ + 𝑏𝑦)    (3.25)              

Fig. 3.11 LSTM Cell 

Please find List of Symbols for the meaning of each parameter. Eqs. 3.19-3.25 are 

working equations of the LSTM cell we briefly describe the operation of the cell below. 
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First, 𝛤𝑓
⟨𝑡⟩

(forget gate)171 is calculated as Eqn.3.19 by the input data of t step 𝑥⟨𝑡⟩ and 

the hidden state from the previous cell 𝑎⟨𝑡−1⟩ . If 𝛤𝑓
⟨𝑡⟩

  is close to 0, the information 

in 𝑐⟨𝑡−1⟩ will be forgotten, if  𝛤𝑓
⟨𝑡⟩

 is close to 1, the information in 𝑐⟨𝑡−1⟩ it will be kept. 

Second, 𝛤𝑢
⟨𝑡⟩

 (update gate) is also calculated as Eqn.3.20 by  𝑥⟨𝑡⟩  and 𝑎⟨𝑡−1⟩ . 

�̂�⟨𝑡⟩ (candidate value) is as shown in Eqn.3.21 as well. It should notice that �̂�⟨𝑡⟩ 

(candidate value) is not 𝑐⟨𝑡⟩(the cell state in t step). Above steps are selecting which 

data in the input information of t step are important. 

Third, the cell state in t step 𝑐⟨𝑡⟩ is updated as Eqn.3.22 by using the forget gate 𝛤𝑓
⟨𝑡⟩

 

to connect the previous cell state 𝑐⟨𝑡−1⟩  and the update gate 𝛤𝑢
⟨𝑡⟩

  to connect the 

candidate value �̂�⟨𝑡⟩. This step is to update the data that can be stored in long-term 

memory. 

Forth, 𝛤𝑜
⟨𝑡⟩

(output gate) is also calculated as Eqn.3.23 by 𝑥⟨𝑡⟩ and 𝑎⟨𝑡−1⟩ . This is to 

select which data we want to output at t step. 

Fifth, the hidden state 𝑎⟨𝑡⟩ is determined as Eqn.3.24 by the output gate 𝛤𝑜
⟨𝑡⟩

 and the 

cell state 𝑐⟨𝑡⟩. This step is to update the data that can be stored in short-term memory. 

At the last step, prediction for 𝑡 step �̂�𝑝𝑟𝑒𝑑
⟨𝑡⟩

 is gotten in Eqn.3.25 by the hidden state 

𝑎⟨𝑡⟩.  

Fig. 3.12 LSTM over multiple time steps. 

Fig. 3.12 describes the process of passing parameters between adjacent LSTM cells. 

It can be seen from the figure that in the process from 𝑡 step to 𝑡 + 1 step, both the 

cell state 𝑐⟨𝑡⟩ and the hidden state 𝑎⟨𝑡⟩ are passed to the next step as parameters of the 

previous step. But it is worth noting that the content of 𝑐⟨𝑡⟩ and 𝑎⟨𝑡⟩ are different, 

namely long-term memory and short-term memory，respectively. Which is also the 
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origin of the LSTM name.  

LSTM can solve the problem of gradient disappearance in RNN to a certain 

extent154. LSTM has played an important role in natural language models. But LSTM 

also has limitations, that is, it relies heavily on forgetting gates169. Because once there 

are too many steps and the forgetting gate is updated too fast, the long-term memory 

cannot be transmitted very far. In machine translation, LSTM can remember about 30 

words172. If the sentence is longer, it will be difficult for LSTM. A new algorithm, an 

attention mechanism can theoretically remember infinitely long information as long as 

the computing power is sufficient. One of the most influential attention mechanism 

algorithms is the Transformer. 

3.4 Transformer 

1. Sequence to Sequence Model173 

Before the Attention Mechanism, the machine translation model used more 

Sequence-to-Sequence Model as shown in Fig. 3.13. It usually consists of two parts,  

Fig. 3.13 Encoder and decoder with LSTM.148 

the encoder and the decoder163, 174. It is easy to find that the encoder175 is similar to 

LSTM described before, except that the output value of each step is omitted. And the 

decoder part is similar as well, except that the hidden state at the beginning is no longer  

𝑎⟨0⟩, but the output of the hidden state 𝑎⟨𝑡⟩ in encoder. ′ here indicates the parameters 

of the decoder. Another difference is that we use the output   �̂�⟨1⟩ calculated by the 

previous step as the input 𝑥′⟨2⟩ for the next step in decoder. Whereas 𝑥′⟨1⟩ is a blank 

symbol. And the output of the last step  �̂�⟨𝑡+1⟩ is a terminal symbol. So, the decoder has 

one more step than the encoder.   

But as we mentioned at the end of LSTM section, if the data length is too long, 
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LSTM cannot handle it well for a long 

time175. Here we need to introduce the 

Attention Mechanism, as shown in Fig. 

3.14.  

This part looks complicated, but it’s 

just an attention model was added between 

encoder and decoder175, 176. The data to be 

processed by Attention actually consists of 

two parts: information contained in all 

hidden states of the encoder,namely from 

𝑎⟨1⟩  to 𝑎⟨𝑡⟩   and the hidden state in 

decoder of the previous step 𝑎′⟨𝑡−1⟩ (see 

the black arrow part in Fig. 3.14).  

Fig. 3.14 Attention Mechanism with LSTM 

2. Attention Mechanism163, 177, 178 

The attention mechanism is designed to imitate 

the human way to process data. That is, when 

processing massive amounts of information, it 

selectively focuses on some information while 

ignoring other information177. There are many 

different types of attention mechanisms, we only use 

the traditional attention mechanism mentioned 

above to illustrate. 

As mentioned before, the data to be processed by 

Attention is only hidden states.  

Suppose at 𝑡  step, the Attention needs to 

process all hidden states from  𝑎⟨1⟩ to 𝑎⟨𝑡⟩ of the  

Fig. 3.15 The Attention Mechanism. 

encoder and the hidden state 𝑎′⟨𝑡−1⟩ of the previous step in decoder. We can take out 

the attention part separately, and only make a simplification as shown in Fig. 3.15. 

The data processing process is as follows 

1. Calculate the degree of correlation between the hidden states from 𝑎⟨1⟩ to 𝑎⟨𝑡⟩ of 

the encoder and the hidden state 𝑎′⟨𝑡−1⟩  in decoder by multiply 𝑊𝑎  and use 
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softmax to get each hidden states weights. This step is to find out the similarity 

between certain data in the outputting target data and each data in the inputting 

source. 

2. Use all hidden states from encoder as a vector to multiply the weighted sum of the 

similarity obtained in the previous step to obtain the context vector in 𝑡 step. 

In traditional attention mechanism, we can easily find that this method is finding 

the similarity between the target data and the source data. Next, we will introduce a new 

concept: self-attention. In this method, the attention mechanism looks for the similarity 

between the internal elements of source data or target data. 

3.  Self-attention Mechanism179-181 

It is worth noting that starting from 3. Self-attention Mechanism to 5. Transformer 

are the introduction to the Transformer algorithm, which comes from Vaswani's paper 

"Attention is all you need"180. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘

+ 𝑀)𝑉        (3.26) 

𝑄 is the matrix of queries. 

𝐾 is the matrix of keys. 

𝑉 is the matrix of values. 

𝑀 is the optical of mask. 

𝑑𝑘 is the dimension of the keys. 

The calculation flow chart of the self-attention 

mechanism is shown in Fig. 3.16. 

The calculation steps are 

𝑞⟨𝑡⟩ = 𝑥⟨𝑡⟩𝑊𝑞        (3.27) 

𝑘⟨𝑡⟩ = 𝑥⟨𝑡⟩𝑊𝑘        (3.28) 

𝑞⟨𝑡⟩ = 𝑥⟨𝑡⟩𝑊𝑣        (3.29) 

Fig. 3.16 Self-attention Mechanism. 

Eqs.3.27 - 3.29. mean to establish the connection between input data across various 

dimensions. 

𝛼1,𝑡 = 𝑞⟨1⟩ · 𝑘⟨𝑡⟩/√𝑑𝑘        (3.30) 

𝛼2,𝑡 = 𝑞⟨2⟩ · 𝑘⟨𝑡⟩/√𝑑𝑘        (3.31) 

… 
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�̂�1,𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛼1,𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑞⟨1⟩ · 𝑘⟨𝑡⟩/√𝑑𝑘)        (3.32) 

�̂�2,𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛼2,𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑞⟨2⟩ · 𝑘⟨𝑡⟩/√𝑑𝑘)        (3.33) 

… 

𝑏⟨1⟩ = ∑�̂�1,𝑡

𝑖

· 𝑣𝑖        (3.33) 

𝑏⟨2⟩ = ∑�̂�2,𝑡

𝑖

· 𝑣𝑖        (3.34) 

4. Multi-head self-Attention180 

Multi-head self-Attention is basically the same as self-attention. The main 

difference is that the data of 𝑄,𝐾, 𝑉 are split into 𝑛 head as Fig. 3.17.  

 

Fig. 3.17 Multi-head self-Attention Mechanism180. 

We only take 𝑥⟨1⟩ as an example to illustrate the calculation process as shown in 

Fig.3.17. It is easy to see that compared to self-attention, Multi-head self-Attention 

performs much more steps as follows, 

1. first splits the parameters 𝑄,𝐾, 𝑉 into 𝑛 heads,  

2. performs self-attention calculations separately,  

3. concatenates the obtained results,  

4. substitutes the data into the linear layer to get 𝑏⟨1⟩. 

The calculation formula is as follows. 

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = Concat (ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … ℎ𝑒𝑎𝑑ℎ)𝑊
𝑂         (3.35) 

Where     ℎ𝑒𝑎𝑑𝑖 =  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾, 𝑉𝑊𝑖
𝑉) 
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5. Transformer180 

In order to solve the problem of cyclic 

operation and parallel operation in traditional 

attention, a new algorithm was proposed, which is 

the famous Transformer180. In this model, LSTM 

is abandoned. And the combination of self-

attention and feed-forward neural network is used 

instead. that is, "Attention is all you need"180.  Of 

course, encoder-decoder is used as the framework 

to process data. The structure of a Transformer is 

shown in Fig. 3.18.                                Fig. 3.18 Transformer.180 

The following is an introduction to the calculation process of Transformer.                                                                                         

Since the position information is not included in the transformer operation, it is 

necessary to add positional encoding at the very beginning. 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
𝑝𝑜𝑠

10000
2𝑖
𝑑

)        (3.36) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (
𝑝𝑜𝑠

10000
2𝑖
𝑑

)        (3.37) 

𝑑 is the dimension of the word embedding and positional encoding180. 

𝑝𝑜𝑠 is the position of the word180. 

𝑖 refers to each of the different dimensions of the positional encoding180. 

After positional encoding is the encoder. 

Put the original data together with the location information into the encoder.  

In addition to multi-head attentions, as we mentioned earlier, the encoder also includes 

Add&Norm182 and Feed forward neural network. 

The Add&Norm layer is to add the output result of multi-head attention to the data 

before inputting multi-head attention together. The purpose is to speed up the gradient 

calculation in training. Then normalize the sum of the above data to stabilize the 

training. 

Feed forward neural network is a two-layer fully connected linear layer, usually using 

Relu as the activation function. 

Perform Add&Norm again to complete the calculation of the encoder. 

The input of the Decoder is the same as that of the encoder. The following is the 
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operation process of the data in decoder. 

1. After the data enters the decoder, a masked multi-head attention will be performed. 

The only difference between this part and multi-head attention is the use of mask tensors. 

Which means the result of 𝑄𝐾𝑇 only displays the data in the lower left triangle. This 

is to prevent transformer from obtaining information after the current time during 

parallel computing. 

2. The result of calculation needs to be operated by Add&Norm as well. 

3. Use the value 𝑉 and key 𝐾 from the encoder calculation result and the query 𝑄 

obtained by the decoder to perform subsequent calculations. 

4. Use the above 𝑄 , 𝐾  and 𝑉  data, which combines the encoder and decoder, to 

perform calculations like whole previous encoder. It is worth noticing that this multi-

head attention is where the input data and target data mapping meet. The main idea of 

this part is to obtain the correct output by finding out the corresponding relationship 

between the input data and the target data by giving the target data different weights. 

The last step is to put the calculation result of the decoder into a linear layer and use 

softmax to get the final probability data to obtain the final target data.  

𝑁𝑥 in the encoder and the decoder represents multi-layer stacking to obtain more 

information of different dimensions. 

The self-attention in Transformer is like the convolution in CNN. Similarly, multi-

head attention is similar to multi-channel convolution in CNN, which uses multiple 

convolution kernels for operations. And the Add&Norm layer in the transformer is 

somewhat comparable to shortcut of ResNet in CNN. These structures enable 

Transformer to remember more information over long distances than RNN or LSTM. 

Whether it is on sequence data such as natural language processing or matrix data such 

as image processing, Transformer has powerful capabilities. 

There are many improved versions of Transformer, among which the most widely 

used is bidirectional encoder representation transformer (BERT)183, and other large 

language model184, which has achieved excellent results in natural language processing. 
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3.5. Simulation, Classification, and Correction with Deep 

Learning 

1. Simulation  

First, according to the correction method used in the past, we made certain adjustments 

to get simulation spectrum. Phase delay ϕ  were changed to get a series of ϕ𝑏   by 

applying IFFT according to the literature114.  As contrast, here we chose a series 

specific phase index is based on simulated spectrum like the distorted spectrum after 

FFT.  

Second, Eqn. 2.128 was used to get the distorted simulated spectra of different states. 

Next, the mixed spectrum of the distorted and normal spectra was achieved, by varying 

the above distorted and normal spectra in different percentages (the total percentage is 

100%). 

𝐴mix(𝑤) = 𝑎𝐴ϕ𝑏
(𝑤) + (1 − 𝑎)𝐴(𝑤)           ( 0 < 𝑎 < 1)        (3.38) 

Finally, by adding different proportions of twisted baselines (specifically, the absorption 

spectra of some substances whose refractive index is higher than the ATR critical 

refractive index, such as carbon black, graphene, etc.), the final simulated twisted 

spectrum was obtained as Fig. 3.19. 

𝐴si(𝑤) = 𝐴mix(𝑤) + 𝑚𝐵(𝑤)       (3.39) 

 

Fig. 3.19 Distorted simulated spectrum(Toluene 

and Carbon black) by IFFT and FFT as training 

data. 
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2. Classification and correction 

  

Fig 3.20 Accuracy of Classification by LSTM ( A ); Classification result by LSTM ( B ). 

As depicted in Fig. 3.20, the classification results obtained by LSTM indicated that 

after approximately 31 training iterations, the accuracy rate reaches approximately 

100%. which demonstrated effective differentiation between distorted and normal 

spectra. However, it's important to acknowledge that this high accuracy may be 

attributed, in part, to the limited experimental data available in our study. 

Following the successful differentiation of distorted spectra from normal ones, the 

subsequent focus lies on correcting the distorted spectra. The conventional method of 

correcting spectra using IFFT and FFT, derived from Peter Hamm's paper114, has been 

employed in our previous work to achieve accurate spectra correction. Nevertheless, 

this method presents drawbacks, notably the requirement for segment-wise corrections 

due to varying degrees of distortion in each peak. Although the PSD maximum 

difference method can be employed to calibrate the peak, the resulting peak shape 

remains an envelope rather than a precise absorption peak. Additionally, the baseline of 

distorted spectra is often elevated to different extents due to the influence of high 

refractive index substances, necessitating baseline correction prior to applying the IFFT 

and FFT methods. This baseline correction process, especially when dealing with the 

superposition of uneven distortion across different wavelength ranges, poses a 

significant challenge. These limitations considerably restrict the widespread application 

of this method. 

In contrast, when employing deep learning methods, such as neural networks, these 

concerns are alleviated. Through the process of machine learning, all influencing 

(A) (B) 
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factors are integrated to produce a single learning outcome, akin to operations within a 

black box. Furthermore, neural network algorithms facilitate faster correction speeds 

and can operate in batch mode. However, it's important to note that the training and 

testing data utilized in our calibration are derived from simulations of the IFFT and FFT 

processes. Although traditional methods may be computationally cumbersome, they 

serve as the foundation for our ability to utilize deep learning algorithms for spectrum 

correction. 

  

   
Fig 3.21 Corrected spectrum by LSTM ( A ); Comparison corrected spectrum between 

two methods ( B, C, D ).  

According to the corrected spectrum depicted in Fig. 21A, LSTM was utilized to 

rectify the seven mixed distorted spectra of carbon black and toluene, yielding accurate 

spectra. Subsequently, in Fig. 3.21B, it is evident that the spectrum obtained via LSTM 

closely resembles the corrected spectrum derived from traditional methods, albeit with 

subtle differences in peak heights. Figures 21C and 21D illustrate the comparison of 

calibration results for mixtures of carbon black and ethanol, as well as acetone, obtained 

through LSTM and the IFFT/FFT methods, respectively. Remarkably, the corrected 

(A) 

(C) (D) 

(B) 
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spectra from both LSTM and traditional methods exhibit nearly identical overlap. This 

observation suggests that despite LSTM operating as a black box within our approach, 

its results closely align with those obtained through the calculation and correction of 

spectra based on physical principles. 

The Transformer as introduced in chapter 

3.4. In the context of spectral correction, only the 

encoder part of the Transformer is utilized for 

classification purposes. Our experimentation 

revealed that compared to LSTM, the Transformer 

model is more sensitive to parameter selection. 

Inadequate parameter selection can lead to loss 

convergence issues, where the loss function 

becomes trapped at specific values, hindering 

further descent.        

Fig. 3.22 Accuracy (A) and Classification  

result by Transformer ( B). 

Fig. 3.22A illustrates the accuracy rate and training time of the Transformer model 

during the classification process. Notably, after 23 training iterations, the accuracy rate 

reaches nearly 100%. Subsequently, Fig. 3.22B presents the classification results 

achieved by the Transformer model. Both LSTM and Transformer models exhibit 

considerable potential and demonstrate exceptionally high accuracy in spectral 

classification tasks. Nonetheless, it's important to acknowledge the potential for 

overfitting due to the limited dataset. However, this underscores the broader 

applicability of deep learning not only in distinguishing distorted spectra but also in 

identifying and classifying substances across various spectral domains. This not only 

pertains to infrared spectra but extends to spectra across different modalities, laying the 

groundwork for increased automation in analytical chemistry through machine learning 

methodologies. 

Similar to Fig. 3.22, Fig. 3.23 presents a comparison between the traditional 

method and the rectification outcomes achieved using Transformer, denoted as "T." .  

(A) 

(B) 
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Fig. 3.23 Corrected spectrum by Transformer (A); Comparison corrected spectrum 

between two methods (B,C,D). 

From Fig. 3.23A, it is evident that Transformer encounters challenges in correcting 

the baseline, which may potentially be attributed to computational limitations. This 

issue becomes more pronounced in the calibration map depicted in Figure 3.23D. 

However, despite these challenges, both LSTM and Transformer exhibit robust 

correction capabilities compared to traditional methods.  

In the traditional approach, the typical procedure involves first removing the 

absorption peaks caused by Diamond, followed by addressing the inclined baseline, and 

ultimately employing KK transformation to attain the corrected peaks. Notably, in this 

process, removing the baseline proves particularly challenging as it encompasses not 

only the baseline tilt caused by carbon black but also distorted absorption peaks, 

including inverted peaks resulting from partial reflection.  

Conversely, deep neural network algorithms, such as LSTM and Transformer, can 

simultaneously address both baseline and peak distortion issues, thereby yielding 

reliable correction outcomes. This capability allows for the consideration of multiple 

(A) 

 

(B) 

(C) (D) 
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spectral artifacts in a unified framework, leading to improved correction results 

compared to traditional methods. 

3. Conclusion 

Initially, we simulated distorted spectra by employing the IFFT and FFT methods, 

varying the degree of distortion for individual substances. Subsequently, we 

incorporated the distorted baseline obtained from experimentation to derive the final 

mixed distorted spectra. In our experiments, we employed two distinct methodologies, 

LSTM and Transformer, to classify and rectify spectra. Ultimately, we identified the 

most effective model to classify and correct experimental data, achieving correction 

results comparable to traditional methods but with significantly improved speed and 

batch correction capability. 

In summary, both LSTM and Transformer models have exhibited robust 

capabilities in discriminating and rectifying distorted ATR spectra, thereby laying a 

solid groundwork for their broader application. However, further research is warranted 

to optimize these procedures. Additionally, given the limited input data, potential 

overfitting issues necessitate careful consideration and mitigation in future endeavors. 
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4. Surface - Enhanced Spectrum 

4.1 Calculation 

Following the introduction of distorted spectroscopy, this chapter will center its 

attention on surface-enhanced spectroscopy utilizing theoretical calculations and 

experimental analysis in the infrared (IR) domain185. 

1. Fresnel’s equations17 

 

Fig.4.1 The internal reflection element (IRE) has a single-layer metal (substance with 

a negative relative permittivity) thin layer model(left) and a double-layer thin film 

model on the surface(right).  

As illustrated in Fig. 4.1, we commence by simplifying the model, treating the 

middle layer as an ideal layered structure. An assumption is made that all thin layers 

are isotropic. 

Referencing the introductory content in Chapter 1, it is established that calculations 

are rooted in Maxwell's equations, necessitating the contemplation of electric and 

magnetic field continuity at the phase boundary. Specific calculations are derivable 

through matrices or Fresnel’s equations. The matrix method, pioneered by Hansen and 

Abelès186, proves instrumental in computing overall reflectance for scenarios involving 

combinations of absorbing and non-absorbing isotropic layers at varying angles of 

incidence17. This method finds significant applications in absorption, reflection, and 

refraction calculations for diverse materials, thicknesses, and angles of incidence. 

While the calculation method based on Fresnel’s equations is more straightforward to 
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comprehend than the matrix method, it is limited in its applicability to anisotropic 

materials. 

Subsequently, we will employ Fresnel’s equations to calculate single/multi-layer 

thin structures with predetermined thickness33, 51, 187. 

�̂�𝑖 = 𝑛𝑖 + 𝑘𝑖 (𝑖 = 1,2,3,4)              (4.1) 

                       𝑚1 = �̂�1cos 𝜃1               (4.2) 

               𝑚𝑖 = √�̂�𝑖
2 − �̂�1

2𝑠𝑖𝑛2𝜃1   (𝑖 = 2,3,4)             (4.3)       

𝑟𝑖𝑗,𝑠 =
𝑚𝑖−𝑚𝑗

𝑚𝑖+𝑚𝑗 
 ，𝑟𝑗𝑖,𝑠 =

𝑚𝑗−𝑚𝑖

𝑚𝑖+𝑚𝑗 
= −𝑟𝑖𝑗,𝑠 ,  𝑡𝑖𝑗,𝑠 =

2𝑚𝑖

𝑚𝑖+𝑚𝑗 
 ,  𝑡𝑗𝑖,𝑠 =

2𝑚𝑗

𝑚𝑖+𝑚𝑗 
     (4.4) 

𝑟𝑖𝑗,𝑝 =
�̂�𝑖

2𝑚𝑗−�̂�𝑗
2𝑚𝑖

�̂�𝑖
2𝑚𝑗+�̂�𝑗

2𝑚𝑖 
, 𝑟𝑗𝑖,𝑝 =

�̂�𝑗
2𝑚𝑖−�̂�𝑖

2𝑚𝑗

�̂�𝑖
2𝑚𝑗+�̂�𝑗

2𝑚𝑖 
= −𝑟𝑖𝑗,𝑝, 

𝑡𝑖𝑗, =
2�̂�𝑖

2𝑚𝑗

�̂�𝑖
2𝑚𝑗+�̂�𝑗

2𝑚𝑖 
, 𝑡𝑗𝑖,𝑝 =

2�̂�𝑗
2𝑚𝑖

�̂�𝑖
2𝑚𝑗+�̂�𝑗

2𝑚𝑖 
                 (4.5) 

𝜙2 = 2𝜋𝑣𝑑2𝑚2 = 2𝜋𝑣𝑑2√�̂�2
2 − �̂�1

2𝑠𝑖𝑛2𝜃1 = 2𝜋
𝑑2

𝜆 
𝑚2                  (4.6) 

𝑡𝑖𝑗,𝑝 =
2�̂�𝑖

2𝑚𝑗

�̂�𝑖
2𝑚𝑗+�̂�𝑗

2𝑚𝑖 
, 𝑡𝑗𝑖,𝑝 =

2�̂�𝑗
2𝑚𝑖

�̂�𝑖
2𝑚𝑗+�̂�𝑗

2𝑚𝑖 
                  (4.7)                    

𝜙2 = 2𝜋𝑣𝑑2𝑚2 = 2𝜋𝑣𝑑2√�̂�2
2 − �̂�1

2𝑠𝑖𝑛2𝜃1 = 2𝜋
𝑑2

𝜆 
𝑚2                  (4.8) 

𝑟123 =
𝑟12+ 𝑟23 𝑒𝑥𝑝(2𝑖ϕ2)

1+ 𝑟12𝑟23 𝑒𝑥𝑝(2𝑖ϕ2)
, 𝑟321 =

𝑟32+ 𝑟21 𝑒𝑥𝑝(2𝑖ϕ2)

1+ 𝑟32𝑟21 𝑒𝑥𝑝(2𝑖ϕ2)
, 

𝑡123 =
𝑡12 𝑡23 𝑒𝑥𝑝(𝑖ϕ2)

1+ 𝑟12𝑟23 𝑒𝑥𝑝(2𝑖ϕ2)
, 𝑡321 =

𝑡32 𝑡21 𝑒𝑥𝑝(𝑖ϕ2)

1+ 𝑟32𝑟21 𝑒𝑥𝑝(2𝑖ϕ2)
,                   (4.9) 

For 3 layers 

𝑅 = 𝑅123 = |𝑟123|
2                  (4.10) 

For 4 layers 

ϕ3 = 2𝜋𝑣𝑑3𝑚3 = 2𝜋𝑣𝑑3√�̂�3
2 − �̂�1

2𝑠𝑖𝑛2𝜃1 ≈ ϕ2                 (4.11) 

𝑅 = 𝑅1234 = 𝑅123 +
𝑇123 𝑅31 𝑇321𝑒𝑥𝑝(4𝑖ϕ3)

1 − 𝑅321𝑅31 𝑒𝑥𝑝(4𝑖ϕ3)
                 (4.12) 

𝐴 = −𝑙𝑔𝑅                (4.13) 

In which 

𝑇 =
𝑇123 𝑇31 𝑒𝑥𝑝(2𝑖ϕ3)

1 − 𝑅321𝑅31 𝑒𝑥𝑝(4𝑖ϕ3)
               (4.14) 
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𝑅𝑖𝑗 = |𝑟𝑖𝑗|
2
, 𝑇𝑖𝑗 = |𝑡𝑖𝑗|

2
               (4.15) 

�̂�1 , �̂�2 , �̂�3  and �̂�4  mean the complex refractive index of medium1, 2, 3 and 4 

respectively. 𝑛 and 𝑘 are the real part and imagery part of refractive index. 𝜃1 is the 

angle of incidence. 𝑑2  and 𝑑3  are the thickness of the medium 2 and 3. 𝑣  is the 

wavenumber (cm−1 ). 𝑖  is the imaginary unit. 𝑟  and 𝑡  are the reflection coefficient 

and the transmission coefficient, respectively. 𝑠  and 𝑝  are the polarization of 

incidence light. For example,  𝑟12,𝑠  is the reflections arising from the interfaces 

between incidence medium (medium 1) and layer (medium 2) with s-polarized incident 

light. For incident light that is not polarized, it can be regarded as 50% mixed light of 

s-polarized and p-polarized. 

𝑅 and 𝑇 are the overall reflectance and transmission of the system respectively. 

The parameter 𝐴 is eventually the absorbance calculated from the reflectance. 

The preceding calculation offers a robust simulation of the ideal thin layer, wherein 

our consideration is confined to the complex refractive index (�̂�). However, it is crucial 

to recognize that the refractive index is fundamentally determined by the complex 

dielectric constant (ε𝑟 ). When the real part (ε′𝑟 ) of the complex dielectric constant 

assumes a negative value, specific conditions can give rise to the generation of surface 

plasmon188-190 resonances.191 This phenomenon yields a notably pronounced surface-

enhanced spectral effect. In the subsequent section, we will provide a concise overview 

of the principles underlying surface plasmon generation and implement adjustments to 

traditional calculations, incorporating considerations for the thickness of the thin layer. 
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2. Surface plasmon polaritons (SPPs) 

 

Fig. 4.2 Demonstration of surface plasmon excitation on the surface of ATR metal 

(negative relative constant substance) (left), Calculation of the conditions for surface 

plasmon generation(right). 

As shown in Fig. 4.2, which means coupling of photons into surface plasmon 

polaritons can be achieved using a coupling medium such as a prism or grating to match 

the photon and surface plasmon polariton (SPP)192-195 wave vectors (and thus match 

their momenta) as Eqs. 4.16-4.22. A prism can be positioned against a thin metal film 

in the Kretschmann configuration196 or very close to a metal surface in the Otto 

configuration192. In this case, only the transverse magnetic wave, which is p-

polarized/TM wave was taken into consideration. According to Maxwell’s equation, the 

dispersion relation for the wave at the interface is shown as Eqn.4.20. 

𝑘𝑥 =
𝜔

𝑐
√𝜀1 𝑠𝑖𝑛(𝜃1)               (4.16) 

𝑘𝑧2

𝜀2
+

𝑘𝑧3

𝜀3
= 0               (4.17) 

𝑘𝑥
2 + 𝑘𝑧2

2  = 𝜀2  (
𝜔

𝑐
)
2

               (4.18) 

𝑘𝑥
2 + 𝑘𝑧3

2  = 𝜀3  (
𝜔

𝑐
)
2

               (4.19) 

𝑘𝑥0 =
𝜔

𝑐
√

𝜀2 ⋅ 𝜀3

𝜀2 + 𝜀3
               (4.20) 
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𝑘𝑥 =
𝜔

𝑐
√

𝜀2 ⋅ 𝜀3

𝜀2 + 𝜀3
=

𝜔

𝑐
√𝜀1 𝑠𝑖𝑛(𝜃1)               (4.21) 

√
𝜀2 ⋅ 𝜀3

𝜀2 + 𝜀3
= √𝜀1 𝑠𝑖𝑛(𝜃1)               (4.22) 

Where, 𝑐 is speed of light. 𝜔 is angular frequency, in which 𝜔 = 2𝜋𝑣. 𝜀1, 𝜀2 and 𝜀3 

mean the relative primitivity of medium1, 2 and 3 respectively. in which 𝜀𝑖 = �̂�𝑖
2(𝑖 =

1,2,3) . 𝜀1 = �̂�1
2 = 2.3778 (Diamond)95, 𝜀3 = �̂�3

2 = 1 (Air). ε2  is complex relative 

primitivity described by the model as following. 

ε2(𝑣) = ε𝐴𝑢(⍵) = ε∞ +
⍵𝑝

2

⍵2 + iΓ⍵
+ G1(⍵) + G2(⍵)              (4.23) 

Usually, the complex relative primitivity can be described by the Lorentz-

oscillator model according to chapter 2.4 as well 

ε(𝑣) = ε∞ + ∑
𝑆𝑗

2

𝑣𝑗
2 − 𝑣2 − i𝑣𝛾𝑗

𝑁

𝑗=1

              (4.24) 

The aforementioned equations are commonly employed in the computation of 

surface plasmon generation conditions. Nevertheless, these formulations typically 

neglect the consideration of the thickness of the metallic layer, specifically the thin layer 

characterized by a negative dielectric constant. It is noteworthy that existing literature 

and computational outcomes suggest that alterations in the thickness of the thin layer 

result in a significant variance in the frequency/wavenumber associated with its 

heightened absorption185, 197, 198. This discrepancy indicates that the frequency 

generated by the surface plasmon is distinct from that of the surface plasmon and is 

intricately linked to the thickness of the thin layer. 

𝑟123 = 𝑟12

  𝑘𝑥 − 𝑘𝑥0 + 𝑟12
−1𝐾0𝑒𝑥𝑝(−2𝑗k𝑧0𝑑)  

𝑘𝑥 − 𝑘𝑥0 + 𝑟12𝐾0𝑒𝑥𝑝(−2𝑗k𝑧0𝑑)
              (4.25) 

𝑘𝑟𝑒𝑠 =
𝜔

𝑐
√

𝜀𝑟 ⋅ 𝜀𝑏

𝜀𝑟 − 𝜀𝑏
 − 𝑟12

−1(𝑘𝑥0)𝐾0𝑒𝑥𝑝(−2𝑗k𝑧0𝑑)              (4.26) 

𝐾0 =
𝜔

𝑐
(

2

𝜀𝑟 + 𝜀𝑏
) (

𝜀𝑟 ⋅ 𝜀𝑏

𝜀𝑟 − 𝜀𝑏
)
3/2

              (4.27) 

k𝑧0 = −
𝜔

𝑐

𝜀𝑚

𝜀𝑚 − 𝜀𝑑
              (4.28) 
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𝜀𝑟 = −𝑟𝑒𝑎𝑙(𝜀2)              (4.29) 

𝜀𝑏 = 𝑟𝑒𝑎𝑙(𝜀3)              (4.30) 

Henceforth, as elucidated by Sophocles J. Orfanidis in "Electromagnetic Waves 

and Antennas"199 incorporating the thickness of the thin layer and employing an 

approximation of the reflection calculation akin to Eqn.4.25 yields the aforementioned 

outcome. This outcome closely aligns with results derived from matrix calculations. 

Specifically, when configuring the incident angle (𝜃1) to 14.9° (marginally exceeding 

the critical angle, 𝜃𝑐 = 14.8°), a pronounced absorption phenomenon at a particular 

wavelength becomes readily achievable. Upon combining Eqn. 4.16 with Eqn.4.20, the 

conditions for exciting Surface Plasmon Polaritons (SPPs) can be ascertained, taking 

into consideration the thickness of the metal layer characterized by negative relative 

permittivity. These conditions are succinctly expressed as Eqn. 4.31. 

𝑘𝑟𝑒𝑠 =
𝜔

𝑐
√

𝜀𝑟 ⋅ 𝜀𝑏

𝜀𝑟 − 𝜀𝑏
 − 𝑟12

−1(𝑘𝑥0)𝐾0𝑒𝑥𝑝(−2𝑗k𝑧0𝑑)   =
𝜔

𝑐
√𝜀1 𝑠𝑖𝑛(𝜃1)              (4.30) 

Upon establishing the thickness, one can readily determine the incident angle 

conducive to SPP generation, along with the corresponding wavelength or wavenumber 

associated with the onset of SPP generation. 

𝜃1 = arcsin {[
𝜔

𝑐
√

𝜀𝑟⋅𝜀𝑏

𝜀𝑟−𝜀𝑏
 − 𝑟12

−1(𝑘𝑥0)𝐾0exp (−2𝑗k𝑧0𝑑)] ∗
𝑐

𝑤√𝜀1
}              (4.31)      

The corresponding result is shown in Fig. 4.3. 

 

Fig. 4.3 Incidence angle of surface 

plasmon generated at a fixed thickness 

and ATR spectrum at a fixed angle of 

14.49° (both calculated values) 
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This observation provides a partial explanation for the emergence of surface 

enhancement spectra in the context of utilizing metal thin film ATR185, 200-204. The 

induction of surface plasmons results in discernible alterations in the baseline and 

conspicuous peaks in the absorption spectrum. Furthermore, the pronounced effect of 

the high refractive index of the thin layer is noteworthy. As illustrated in chapter 4.2, 

simulation data indicates that, with an incident angle slightly surpassing the critical 

angle, control can be exerted over the thickness of the high refractive index thin layer 

(non-metal, where the real part of the relative permittivity is positive). Consequently, 

the surface enhancement spectrum's thickness can be determined. Nevertheless, owing 

to the elevated refractive index of the thin layer, the absorption spectrum can experience 

a twofold enhancement, yet fails to yield absorption peaks akin to surface plasmons. 

Fig.4.4 Demonstration of surface plasmon excitation on the surface of ATR metal with 

grating. 

The corresponding SPP is calculated as follows 

𝑘𝑥 =
𝜔

𝑐
√𝜀1 𝑠𝑖𝑛(𝜃1) + 𝑚

2𝜋

𝛬
              (4.32)  

𝜔

𝑐
√𝜀1 𝑠𝑖𝑛(𝜃1) + 𝑚

2𝜋

𝛬
= ±

𝜔

𝑐
√

𝜀2 ⋅ 𝜀3

𝜀2 + 𝜀3
               (4.33) 

Where 𝑚 is the diffraction order, Λ is the grating period, 𝑛 the refractive index of the 

surrounding medium. Compared with Eqn. 4.21, Eqn. 4.32 adds 𝑚
2𝜋

𝛬
  as the 

contribution of the wave vector. 

Regrettably, the application of the aforementioned formula necessitates a uniform 

and known thickness of the thin layer or the shape of grating, a condition that is readily 

achievable in the case of surfaces coated with metals such as gold or other conventional 



90 

 

materials205-208. However, when dealing with nanomaterials or emerging semiconductor 

materials, challenges arise due to diverse material morphologies, unevenness, and the 

impracticality of achieving uniform thickness209, 210. This is particularly evident in 

instances where experimental conditions are stringent, or when resorting solely to 

photolithography technology. Although the previously mentioned calculation 

effectively addresses the impact of thickness on surface plasmons, it fails to 

accommodate materials exhibiting irregular thickness and scattering on the surface, 

rather than forming a coherent film. Consequently, a computational approach 

employing the Finite-Difference Time-Domain (FDTD)211-214 method becomes 

imperative. This involves modeling the experimental materials within software such as 

Lumerical to simulate and analyze the behavior of the materials under consideration. 
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3. The Finite-Difference Time-Domain (FDTD) method214, 215 

The Finite-Difference Time-Domain (FDTD)214-216 method, rooted in the 

numerical solution of Maxwell's equations as described in Chapter 1, offers a versatile 

and accurate approach to simulate the complex interactions of electromagnetic fields 

with nanostructures.  

The FDTD method discretizes both time and space, allowing the numerical 

solution of Maxwell's equations215, 216. The electric and magnetic fields are represented 

on a grid, and their values are updated iteratively over discrete time steps. The update 

equations for the electric and magnetic fields are given by: 

𝜕�⃗� 

𝜕𝑡
=

1

ε
𝛻 × �⃗⃗� − 𝐽         (4.34) 

𝜕�⃗⃗� 

𝜕𝑡
=

1

μ
𝛻 × �⃗�         (4.35)   

In the context of surface-enhanced spectroscopy, the FDTD simulations217 

facilitate the exploration of plasmonic resonances218, field enhancements, and near-field 

distributions surrounding metallic nanostructures. The parameters in the FDTD 

simulation settings encompass the physical structure, simulation area, boundary 

conditions, light source characteristics, as well as monitor and script commands. This 

methodology has transitioned from its initial one-dimensional (1D) formulation to its 

current three-dimensional (3D) configuration. These simulations yield valuable insights 

into the underlying mechanisms of surface-enhanced Raman scattering (SERS)219 and 

surface-enhanced infrared absorption (SEIRA)191, 197. Due to the constraints pertaining 

to the scope of the research objects, the ensuing discussion will focus exclusively on 

the SEIRA aspect. 
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4.2 Simulation 

Fig. 4.5 Complex reflective index (𝑛 presents refraction and 𝑘 presents absorbance) 

of Toluene in 650 − 4000𝑐𝑚−1(left), 650 − 800𝑐𝑚−1(right). 

Subsequently, the infrared spectrum of Toluene serves as the subject of analysis, 

wherein calculations and simulations are conducted based on Eqs. 4.1-4.15 from 

Chapter 4.1 to derive the infrared absorption spectra under various conditions. As 

illustrated in Fig. 4.1, 𝑛1 denotes the internal reflection element (IRE) of ATR, with 

𝑛𝐺𝑒 = 4.0, 𝑛𝐷𝑖𝑎𝑚𝑜𝑛𝑑 = 2.39;. Different high refractive index materials, such as Au, Pt, 

Carbon Black, etc., are employed as the intermediate layer (𝑛2). Toluene, functioning 

as the third layer solvent, exhibits a complex refractive index that varies with 

wavenumber, as depicted in Fig. 4.5. 

The parameters manipulated during the computational process include: initially, 

maintaining the thickness (𝑑2) constant while altering the incident angle 𝜃1) to observe 

the resulting absorption spectrum; subsequently, incrementing the thickness ( 𝑑2 ) 

appropriately and varying the incident angle (𝜃1 ) to obtain a distinct absorption 

spectrum; finally, setting the incident angle slightly above the critical angle, 

maintaining it fixed (𝜃1), and adjusting the thickness (𝑑2) to acquire the absorption 

spectrum. Throughout this procedure, different types of 𝑛1  and 𝑛2  are also 

encompassed within the investigation and comparison. 

Regrettably, owing to the constraints of experimental conditions, this segment of 

the study cannot be experimentally executed; however, all refractive index data are 

derived from calculations based on experimental measurements. 
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Fig. 4.6 Complex reflective index (𝑛 presents refraction and 𝑛 presents absorbance) 

of Toluene in 650 − 4000𝑐𝑚−1 (left), 650 − 800𝑐𝑚−1 (right).Set 𝑑𝐴𝑢 = 10−5um =

0.01nm with changing the incident angle 𝜃1 = 10° − 80° (A, B); 𝑑𝐴𝑢 = 10−3um =

1nm  with changing the incident angle 𝜃1 = 10° − 80°  (C, D); 𝜃1 = 25° , 𝑑𝐴𝑢 =

10−5 − 6 ∗ 10−2um = 0.01 − 60nm (E, F). 

In the depicted Fig. 4.6A, B, the incident angle 𝜃1 exerts a significant influence, 

particularly in proximity to 𝜃𝑐, where the absorption spectrum undergoes pronounced 

changes. Specifically, when 𝜃1 < 𝜃𝑐 , the absorption spectrum closely resembles the 

(C) (D) 

(E) (F) 

(A) (B) 
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imaginary part (𝑘 ) of the complex refractive index. Conversely, when 𝜃1 > 𝜃𝑐 , the 

absorption spectrum exhibits similarities to the real part (𝑛) of the complex refractive 

index. With an increase in the thickness (𝑑2, the baseline of the absorption spectrum 

starts to elevate (Fig. 4.6C, D), particularly in the vicinity of 𝜃𝑐, resembling phenomena 

observed in experimental observations. 

Under the condition of a fixed incident angle (𝜃1 = 25°, slightly exceeding 𝜃𝑐), 

varying 𝑑2 allows for the observation of the surface enhancement spectrum to a certain 

extent (Fig. 4.6E, F). 
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Fig. 4.7 Complex reflective index (𝑛 presents refraction and 𝑛 presents absorbance) 

of Toluene in 650 − 4000𝑐𝑚−1(left), 650 − 800𝑐𝑚−1(right). Set 𝑑𝑃𝑡 = 10−5um =

0.01nm with changing the incident angle 𝜃1 = 10° − 80° (A, B); 𝑑𝑃𝑡 = 10−3um =

1nm  with changing the incident angle 𝜃1 = 10° − 80°  (C, D); 𝜃1 = 25° , 𝑑𝑃𝑡 =

10−5 − 6 ∗ 10−2um = 0.01 − 60nm (E, F). 

Upon transitioning the material of the second layer from Au to Pt, a phenomenon 

akin to the aforementioned conclusion becomes apparent. It is noteworthy that when 

maintaining 𝜃1 = 25°  and varying 𝑑2  within the range of 650 − 4000cm−1 , 

(A) (B) 

(E) 

(C) 

(F) 

(D) 
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heightened volatility is observable with Pt serving as the intermediate layer. This 

observation aligns with phenomena expounded upon in the literature by Thomas12, 220. 

Fig. 4.8 Complex reflective index (𝑛 presents refraction and 𝑛 presents absorbance) 

of Toluene in 650 − 4000cm−1(left) ,650 − 800cm−1(right). Set 𝑑𝐶1 = 10−5um =

0.01nm with changing the incident angle 𝜃1 = 10° − 80° (A, B); 𝑑𝑐1 = 10−3um =

1nm  with changing the incident angle 𝜃1 = 10° − 80°  (C, D); 𝜃1 = 25° , 𝑑𝐶1 =

10−5 − 6 ∗ 10−2um = 0.01 − 60nm (E, F). 

Owing to the substantial refractive index disparity, the observation of the surface 

enhancement spectrum proves challenging when Carbon Black serves as the middle 

layer, particularly when utilizing Ge as 𝑛1. To address this, Diamond is employed as 

the Internal Reflection Element (IRE), with the incident angle set at 𝜃1 = 45°. 

(C) (D) 
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Fig. 4.9 Compare the absorbance spectrum with thickness change in Diamond-Carbon 

black-Toluene system (𝜃1 = 45°) (A), and the absorbance spectrum of pure Toluene in 

Diamond-ATR (B). 𝜃1 = 45°, 𝑑𝐶1 = 10−3 − 10um = 1 − 10000nm. 

Simultaneously, adopting Carbon Black as the third layer and Toluene as the second 

layer yields a comparable enhanced spectrum. However, it is imperative to highlight 

that the highest Improvement Factor for surface enhancement in this scenario is 

approximately 2.  

 

 

  

(A) 

(B) 
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4.3 Experiment 

 

 

Fig 4.10. Process of Pd production ( A ); TEM of Pd ( B ); experimental procedure of  

Pd and Rh6G ( C ). 

The procedure for acquiring nano-Pd through water bath synthesis is depicted in 

Fig.4.10A, and the corresponding Transmission Electron Microscopy (TEM) image for 

Pt is presented in Figure 4.10B. 

Subsequently, Pd was employed as the particle to induce surface plasmon 

resonances in the experiment. The experimental procedure is illustrated in Fig.4.10C, 

and the resulting surface-enhanced spectrum was obtained221. 

Fig 4.11 Comparison between the spectra of Rhodamine 6G(2.5mg/ml) with different 

concentration of Pd, 650 − 4000cm−1(left) ,1000 − 2000cm−1(right). 

As depicted in Fig 4.11, even at elevated concentrations of Rhodamine 6G, such as 

2.5g/L, its infrared absorption peak remains inconspicuous. However, in the presence 

of Pd as a substrate, a marked enhancement of the absorption peak becomes evident. 

Notably, within a specified range, an increase in the concentration of Pd/Rhodamine 

(A) (B) (C) 

(B) (A) 
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6G corresponds to an augmented tendency of absorption peak enhancement. This 

observation aligns with the findings articulated by Hu in her published paper222.  

Regarding the negative peak observed within the absorption peak, such as at 

2500cm−1 , it finds explication in the perspectives presented in the cited reference 

literature. Specifically, the higher refractive index of Pd (as illustrated in Fig 4.10C) 

surpasses the critical refractive index of Diamond-ATR. Consequently, the elevated 

refractive index of the sample induces localized refraction phenomena on the surface. 

However, due to the limited quantity used, the distortion of the final spectrum and the 

shift of the peak value are not overtly pronounced. Given that higher concentrations of 

Pd lead to a more substantial baseline drift, our consideration is confined to a maximum 

value of 0.05mg/ml, as informed by experimental outcomes and recorded literature222. 

The enhancement factor is as shown in Eqn. 4.36 

𝑒𝐸𝐹 =
  𝐼𝐺𝐸𝐼𝑅𝐴

  𝐼0
              (4.36) 

𝐼𝐺𝐸𝐼𝑅𝐴  and 𝐼0  are the peak heights corresponding to the characteristic peaks of 

Rhodamine 6G with and without Pd. 

We can easily obtain the enhancement factor corresponding to the characteristic 

absorption peak of Rhodamine 6G, as shown in Table 4.1. 

Table 4.1 The enhancement factor of Rh6G in typical peaks. 

 Wavenumber/(cm−1) 

Pd/(mg/mL)* 1608 

v(-CN) 

1541 

v(ring) 

1508 

v(ring) 

1319 

v(-CN) 

0.01 6.85 16.24 13.06 7.54 

0.02 4.75 13.28 10.69 5.69 

0.025 17.31 31.76 26.52 19.45 

0.05 13.83 28.26 23.22 17.59 

0.125 8.52 22.68 18.38 11.36 

0.25 24.72 46.96 40.04 35.38 

* Rh6G = 2.5 mg/mL 

Similarly, we derive the enhancement factors corresponding to the characteristic 

absorption peaks, as depicted in Fig 4.12. 

The enhancement effect demonstrates a gradual increase with the rise in Pd 
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concentration. Nevertheless, instances arise where the enhancement effect at lower 

concentrations surpasses that observed at higher concentrations. For instance, the 

enhancement effect at 0.025 mg/mL exceeds that at 0.05 mg/mL and 0.125 mg/mL. We 

attribute this phenomenon to the possibility of uneven mixing of the concentration 

during sonication. 

Fig.4.12 Enhance factor in 4 typical wavenumbers with different concentration of Pd. 

Analogously, with the Pt concentration held constant at 0.05 mg/mL, employing 

varying concentrations of Rh6G yields the surface enhancement spectrum depicted in 

Fig 4.13. 

Fig 4.13 Comparison between the spectra of Rhodamine 6G with different 

concentrations of Rhodamine 6G. 

The enhancement coefficients corresponding to the characteristic peaks are 

detailed in Table 4.2.  



101 

 

Table 4.2 The enhancement factor of Rh6G in typical peaks. 
 Wavenumber/(cm−1) 

Rh6G /(mg/mL)* 1608 

v(-CN) 

1541 

v(ring) 

1508 

v(ring) 

1319 

v(-CN) 

0.125 16.48 46.41 37.89 25.23  

0.25 13.15 36.87 30.55 22.62 

0.5 10.73 23.46 18.32 16.08 

1 11.12 20.07 16.58 14.31 

1.25 10.72 23.01 18.99 14.77 

2.5 11.77 21.72 18.69 15.31 

* Pd = 0.05 mg/mL 

Observing Fig 4.14, it becomes evident that the surface enhancement coefficient 

increases with decreasing concentrations of Rh6G. 

Fig 4.14 Enhance factor in 4 typical wavenumbers with different concentration of 

Rhodamine 6G. 
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Conclusions 
Through calculations of ATR spectroscopy and detailed simulations, our study 

demonstrates that high refractive index mixtures achieve limited spectral enhancement 

when the incident angle slightly exceeds the critical angle. Conversely, materials with 

a negative real part of the relative dielectric constant, such as metals, exhibit significant 

surface-enhanced spectra near the critical angle due to surface plasmon generation. 

Notably, our research uniquely considers the influence of metal film thickness on these 

effects. 

In experiments with palladium (Pd) and Rhodamine 6G, we observed that the 

enhancement factor increased with higher Pd concentrations and decreased with higher 

Rhodamine 6G concentrations. These findings advance our understanding of infrared-

enhanced spectroscopy and its potential integration with two-dimensional infrared-

enhanced spectroscopy, providing a foundation for further exploration in optimizing 

spectral enhancements across various materials. 
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5. Introduction to Two-dimensional 

Infrared (2D IR) Spectroscopy  

5.1 Two-dimensional Fourier transform (2D FT) 

According to Chapter 2.1, it is easy to get 1D FT83 as Eqs. 5.1 and 5.2. 

𝐹(⍵) = ∫ 𝑓(𝑡)𝑒−𝑖⍵𝑡𝑑𝑡
∞

−∞

,              (5.1) 

𝑓(𝑡) =
1

2𝜋
∫ 𝐹(⍵)𝑒𝑖⍵𝑡𝑑⍵,

∞

−∞

              (5.2) 

in which 𝐹(⍵) is spectrum in frequency domain, and 𝑓(𝑡) is spectrum in time domain. 

Here, 𝐹(⍵)  is the 1D spectrum of 𝑓(𝑡), which shows the components of the original 

signal 𝑓(𝑡) at each frequency ⍵.                                  

Combine KK transform, Eqn. 2.43 can also be expressed as  

𝐹(⍵) = ∫ 𝑓(𝑡)𝑒−𝑖⍵𝑡𝑑𝑡
∞

−∞

= 𝐹𝑟(⍵) + 𝐹𝑖(⍵)   ,       (5.3) 

𝐹𝑟(⍵) is the real part of spectrum and 𝐹𝑖(⍵) is the its imaginary part, whereas |𝐹(⍵)| 

(or √𝐹𝑟
2(⍵) + 𝐹𝑖

2(⍵) ) is the amplitude spectrum, and 𝑡𝑎𝑛−1(
𝐹𝑖(⍵)

𝐹𝑟(⍵)
)  is the phase 

spectrum38. 

According to Euler's formula,  

𝑒𝑖𝑤𝑥 = cos(⍵𝑥) + 𝑖 sin(⍵𝑥) ,             (5.4)  

𝑓(𝑡) =
1

2𝜋
∫ [𝐹(⍵) cos(⍵𝑥) + 𝑖𝐹(⍵) sin(⍵𝑥)]𝑑⍵

∞

−∞

  ,            (5.5) 

then 𝑓(𝑡)  can be understood as linear combinations of countless trigonometric 

functions (i.e. one-dimensional orthogonal basis) with different ⍵ -directions and 

frequencies.  
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Fig. 5.1 1D Fourier transform, time domain (left); Frequency domain (right).  

Unlike the 1D Fourier transform given in Fig. 5.1, in which time domain and 

frequency domain are in the same coordinate system. In Fig. 5.2, the graphs of time 

domain and frequency domain are displayed in two dimensions. 2D Fourier transform 

will be introduced as following.  

  

Fig. 5.2 2D Fourier transform, 𝑓(𝑥, 𝑦) (left); 𝐹(𝑢, 𝑣) (right). 

A 2D spectrum 𝑓(𝑥, 𝑦) is continuous and non-periodic. In the 2D FT223, 224, we 

use two coordinate systems to represent the time domain (𝑥, 𝑦) and frequency domain 

(𝑢, 𝑣) respectively. It also has properties similar to 1D spectral transformation. It can 

be clearly seen from the figure that 2D FT simply adds another dimension to the 

respective 𝑦-axis (𝑣-axis) on the basis of 1D FT. The corresponding formula can be 

expressed as following: 

𝐹(𝑢, 𝑣) = ∫ ∫ 𝑓(𝑥, 𝑦)𝑒−𝑖⍵(𝑢𝑥+𝑣𝑦)𝑑𝑥𝑑𝑦
∞

−∞

=
∞

−∞

𝐹𝑟(𝑢, 𝑣) + 𝐹𝑖(𝑢, 𝑣),              (5.6) 

𝑓(𝑥, 𝑦) = ∫ ∫ 𝐹(𝑢, 𝑣)𝑒𝑖⍵(𝑢𝑥+𝑣𝑦)𝑑𝑢𝑑𝑣
∞

−∞

∞

−∞

  .            (5.7) 

Here, 𝐹(𝑢, 𝑣)  is the 2D spectrum in frequency domain of 𝑓(𝑥, 𝑦) . 𝐹(𝑢, 𝑣) 

indicates the components of 𝑓(𝑥, 𝑦) at both 𝑥- and y-directions for frequency 𝑢 and 

𝑣 respectively, which also contain real and imaginary parts: 
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𝑒𝑖𝑤(𝑢𝑥+𝑣𝑦) = [cos(𝑢𝑥) cos(𝑣𝑦) − sin(𝑢𝑥) sin(𝑣𝑦)] 

                                                  +𝑖[sin(𝑢𝑥) cos(𝑣𝑦) + sin(𝑣𝑦) cos(𝑢𝑥)]    .          (5.8)  

Then 𝑓(𝑥, 𝑦) can be understood as a linear combination of countless products of 

sine and cosine functions of x and y (i.e., a 2D orthogonal basis). These orthogonal 

bases are also periodic functions in the plane. 

The 2D FT is separable, that is, it can be separated into two 1D FTs. For example, 

using MATLAB, the function of the two-dimensional fast Fourier transform (2D FFT) 

is in the form of 𝑦 = 𝑓𝑓𝑡2(𝑥) = 𝑓𝑓𝑡[𝑓𝑓𝑡(𝑥)].  

The order of integration in 2D FT is commutative: 

𝐹(𝑢, 𝑣) = 2𝐷 𝐹𝑇 [𝑓(𝑥, 𝑦)]

= ∫ 𝑒−𝑖⍵(𝑣𝑦)𝑑𝑦[∫ 𝑓(𝑥, 𝑦)𝑒−𝑖⍵(𝑢𝑥)𝑑𝑥
∞

−∞

]
∞

−∞

= ∫ 𝐹(𝑢, 𝑦)𝑒−𝑖⍵(𝑣𝑦)𝑑𝑦
∞

−∞

    .                                        (5.9)   

Similarly, 2D FT can also be similarly performed through 2D FFT and convolution 

calculations. 
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5.2 2D IR Spectroscopy 

Two predominant methodologies characterize contemporary usage of 2D Infrared 

(2D IR) Spectroscopy. The first approach involves the conversion of 1D spectrum into 

symmetrical 2D spectrums. This innovative technique was introduced by Isao Noda225, 

226. We will only briefly introduce it here. the second method entails the direct 

application of nonlinear optical experiments to discern the correlation between 

chemical bond vibration modes, resulting in the acquisition of asymmetric 2D spectra, 

(asymmetry is not absolute). The focus of the present chapter, as well as subsequent 

chapters, will be directed towards a comprehensive exploration of the latter method. 

 

1. 2D IR by Isao Noda225, 226 

We will now start the introduction of the first method, devised and advanced by 

Isao Noda. This method pertains to the conversion of a series of 1D spectra into 2D 

spectra. Its utility lies in the analysis of diverse conditions, including temperature, 

pressure, time, and other factors, to discern the impact on the spectrum.227 This entails 

an investigation into the similarity or dissimilarity of spectral intensity changes induced 

by external perturbations to the sample.226  

The computational procedure unfolds as follows. 

In the context of this method, let it be posited that a collection of 𝑚  spectra, 

denoted as 𝐴(𝑣𝑘, 𝑡𝑖) , has been acquired in the presence of external disturbances.227 

These disturbances encompass variables representative of diverse factors, such as 

temperature, pressure, time, and so on. Here, 𝑣𝑘 denotes the wave number associated 

with the 𝑘 -th sampling point, serving as a frequency or wavenumber coordinate. 

Concurrently, 𝑡𝑖  signifies the outcome corresponding to the 𝑖 -th disturbance (𝑖 =

1,2…𝑚).225-227 

Then, the final dynamic spectrum �̃�(𝑣𝑘, 𝑡𝑖) can be expressed as225-227 

�̃�(𝑣𝑘 , 𝑡𝑖) = {𝐴
(𝑣𝑘, 𝑡𝑖) − �̅�(𝑣𝑘)     𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑚

0                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
         (5.10) 

Where �̅�(𝑣𝑘) is the reference spectrum, usually the average spectrum, 

which is  

�̅�(𝑣𝑘) =
1

𝑚
∑𝐴(𝑣𝑘, 𝑡𝑖)

𝑚

𝑖=1

                        (5.11) 
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The calculation formulas of synchronous and asynchronous 2D correlation spectra 

𝛷(𝑣1, 𝑣2) and 𝛹(𝑣1, 𝑣2) are as follows225-227 

𝛷(𝑣1, 𝑣2) =
1

𝑚 − 1
∑�̃�(𝑣1, 𝑡𝑖) ∙ �̃�(𝑣2, 𝑡𝑖)

𝑚

𝑖=1

                      (5.12) 

𝛹(𝑣1, 𝑣2) =
1

𝑚 − 1
∑�̃�(𝑣1, 𝑡𝑖) ∙ ∑𝑁𝑖𝑗�̃�(𝑣2, 𝑡𝑗)

𝑚

𝑗=1

𝑚

𝑖=1

          (5.13) 

𝑁𝑖𝑗 is the Hilbert-Noda transformation matrix225-227, 

𝑁𝑖𝑗 = {

0                 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑚

  
1

𝜋(𝑗 − 𝑖)
                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

      (5.14) 

The Hilbert transform produces a new set of spectra that are orthogonal (i.e. 90° 

out of phase) to the original 𝑡 correlated spectra228. 

The aforementioned information, Eqs 5.10-5.15, are entirely articulated within Isao 

Noda's papers225, 227. 

Fundamentally, the synchronized 2D correlation spectrum 𝛷(𝑣1, 𝑣2) is actually 

the result of multiplying a series of spectral matrices 𝐴(𝑣𝑘, 𝑡𝑖) with its own transpose 

and dividing by (m − 1). To illustrate this concept, we employ the simulated Toluene 

infrared absorption spectrum on the Diamond-ATR. In this instance, the 

variable 𝑡 represents the alteration of the incident angle (respectively 

0°, 10°…90°,m = 10). The cumulative spectrum, when 𝑡 is varied across different 

incident angles, is denoted as a 160 ∗ 10 matrix, as depicted in Fig. 5.3 (Left). 

 

Fig. 5.3 1D spectrum of Toluene based on Diamond- ATR with incident angles from 

0° to 90°(Left), synchronous 2D spectrum (Right). 
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Then the corresponding synchronous 2D spectrum, as shown in Fig. 5.3 (Right), is 

a 160 ∗ 160  matrix. The derivation of 160 ∗ 160 matrix, representing the 

synchronous 2D spectrum, involves the multiplication of a 160 ∗ 10  matrix 

(representing the 1D spectrum) by the transpose of a 160 ∗ 10 ∙ 10 ∗ 160  matrix, 

followed by division by (m − 1). The main calculation process can be expressed as 

𝐴160∗10 ∙ 𝐴′
10∗160/9 = �̃�160∗160

 Syn
         (5.15) 

While the method yields a conversion of a series of 1D spectra into 2D spectra, it 

does not encompass additional information compared to the original one-dimensional 

spectrum. Furthermore, due to the symmetry of the resulting two-dimensional spectrum 

about the diagonal axis, only half of the 

image is necessary to accurately represent 

the entirety of the content. 

The asynchronous 2D spectrum 

employs a comparable methodology as in 

Fig. 5.4, with the exception that the Hilbert 

transformation is applied to the influencing 

factor, denoted as 𝑡. Hilbert transformation 

as defined in Equation 2.58 in Chapter 2.2.  

                        Fig. 5.4 Asynchronous 2D spectrum 

ℋ[𝑓(𝑡)] = 𝑓(𝑡) = 𝑓(𝑡) ∗
1

𝜋𝑡
=

1

𝜋
∫

𝑓(𝜏)

𝑡 − 𝜏
𝑑𝜏

∞

−∞

         (5.16) 

Initially, the process involves obtaining a 10*10 orthogonal matrix (90° out of 

phase with the original influencing factors 𝑡). Subsequently, the original 160 ∗ 10 

matrix is multiplied by the aforementioned orthogonal matrix, followed by the 

multiplication with the transposed 10 ∗ 160 matrix of the original matrix, resulting in 

a 160 ∗ 160 matrix, namely 160 ∗ 10 ∙ 10 ∗ 10 ∙ 10 ∗ 160, which is then divided by 

(m − 1). 

𝐴160∗10 ∙ 𝑡10∗10 ∙ 𝐴′
10∗160

/9 = �̃�160∗160
 Asyn

            (5.17) 

It is worth noting that the Hilbert transformation here is not a transformation on the 

original spectra. Which is different from what we used in the correction in Chapter 2. 

The Hilbert transformation here refers to the Hilbert transformation on 𝑡, rather than 
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the spectrum. Since this conversion also results in a 2D spectrum that is symmetrical 

about the diagonal axis, only half of the image can reflect all the information. 

While the 2D spectrum obtained through this approach has inherent limitations, the 

potential lies in leveraging the insights from Chapter 3 on deep learning. This idea could 

offer a novel perspective, expanding the application horizon. Specifically, drawing 

parallels to image recognition and natural language models within the realm of deep 

learning, the 1D spectrum aligns more closely with natural language processing 

(NLP)229 models like RNN, LSTM, and Transformer. In contrast, the 2D spectrum 

bears resemblance to image recognition and is better suited for models such as CNN 

and Vision-Transformer. This suggests that in situations where processing data in the 

1D spectrum proves challenging, the application of image recognition models may offer 

a solution by elevating the dimensionality without altering the original information. 

 

  



110 

 

2. 2D IR with nonlinear optics 

Now we will focus on 2D infrared spectroscopy230-235 that uses nonlinear optics to 

detect chemical bond vibrations236. It is imperative to clarify that in the subsequent 

discussions, the term "2DIR" specifically alludes to this particular methodology. 

2D IR237, 238 has emerged as a powerful technique for probing the structural and 

dynamic properties of molecules in a variety of scientific disciplines. This method 

extends the capabilities of traditional one-dimensional infrared spectroscopy by 

providing additional information about molecular interactions, dynamics, and coupling. 

In contrast to 1D infrared spectrum, 2D IR introduces an additional frequency 

dimension239. Nevertheless, within the 2D IR, phenomena such as distorted spectra and 

surface-enhanced spectra, akin to those observed in 1D linear spectra, are also present. 

This similarity arises because the frequency distribution on the 𝑥-axis (pump) in 2D IR 

is exactly the same as the frequency measured by 1D infrared spectrum. The key 

distinction lies in the fact that 1DIR captures solely the initial vibration frequency, while 

2D IR quantifies signal intensity variations over time in the two-dimensional frequency 

space240. 

Fig. 5.5 Schematic diagram of the principle and application of 2D IR spectroscopy241. 

Despite the relatively intricate principles governing 2D IR spectroscopy, to sum it 

up in one sentence, 2D IR spectroscopy was obtained by perform Fourier transform on 

third-order nonlinear optical signals 𝑆(𝜏, 𝑇⍵, 𝑡3) in the time domain. Which can be 

expressed as Eqn. 5.18 or 5.19 

𝑆(⍵𝜏, ⍵𝑚, 𝑇⍵) ∝ ∫ 𝑑𝜏 ∫ 𝑑𝑡3𝑒
∓𝑖⍵𝑚𝑡3∓𝑖⍵𝜏𝜏 ∙ 𝑆(𝜏, 𝑇⍵, 𝑡3)

∞

0

∞

0

    (5.18) 

Which can be also written as  

𝑆(⍵𝜏, ⍵𝑚, 𝑇⍵) ∝ ∫ ∫ 𝑆(𝜏, 𝑇⍵, 𝑡3) ∙ 𝑒∓𝑖⍵𝑚(𝑡3+𝜏)𝑑𝑡3𝑑𝜏
∞

0

∞

0

    (5.19) 
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In which, ⍵𝜏 is the excitation frequency, 𝜏 is the excitation frequency coherence time 

after emission, ⍵𝑚 is the emission frequency, 𝑡3 is the emission coherence time, 𝑇⍵ 

is the reaction time (population time). The sign (∓)  of phase is matched by phase 

(phase match, the vector sum of the incident beam) is determined.  

Certainly, it is apparent that the above computational procedure closely parallels 

the 2D FT introduced in Chapter 5.1. However, during experimental investigations, two 

distinct methodologies are typically employed to perform the Fourier transform to 

obtain the 2D spectrum, thereby constituting a significant divergence among various 

approaches in 2D IR242. 

1) ⍵𝜏  and ⍵𝑚  are both derived through instrumental Fourier transform, involving 

the utilization of an instrument, such as a grating or etalon, to spectrally disperse the 

incident light and ascertain the frequencies. This approach is known as the narrow 

pump/broad probe (pump/probe) method. As illustrated in Figure 5.6, the pump-pump 

direction typically aligns, while the probe direction differs. The ultimate detector is 

exclusively configured to capture signals along the probe direction. Which is 

characterized by the relative simplicity and ease of operation of the experimental 

apparatus. However, its limitations include a restricted frequency range dictated by the 

broadband light frequency, leading to less precise outcomes.237 

 
Fig. 5.6 Schematic diagram of pump-probe used for 2D IR detection. 

2) The derivation of ⍵𝜏 involves the application of mathematical Fourier transform, 

while ⍵𝑚 is obtained through instrumental Fourier transform. Specifically, this entails 

time-domain scanning to procure the coherence pattern, followed by employing 

mathematical techniques to transform the coherence pattern into frequency data—a 

process commonly referred to as coherence method. As depicted in Figure 5.7, the 

pump-pump-probe configuration and the detection direction of the final signal 
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collectively constitute a parallelogram. This approach is commonly referred to as the 

"CARS-Box" geometry.238, 243 The advantage of this method is high frequency 

resolution and time resolution. However, its drawbacks encompass high cost, 

operational intricacy, and extended measurement durations.  

 
Fig. 5.7 Box-CARS geometry used for 2D IR detection. 

Next, we will elaborate on the calculation process of third-order nonlinear optical 

signals 𝑆(𝜏, 𝑇⍵, 𝑡3) by combining the Schrödinger equation and relevant knowledge of 

nonlinear optics. 

 

3. Calculation process of 2D IR with nonlinear optics237 

In the discussion about Maxwell’s equations in Chapter 1, we briefly mentioned 

that the response of materials to electric fields is divided into linear and nonlinear 

situations (Eqs. 1.11-1.14), that is, 

�⃗� = ε0𝜒𝑒�⃗�         (5.20) 

�⃗⃗� = ε�⃗� = ε0ε𝑟�⃗� = ε0(1 + 𝜒𝑒)�⃗�         (5.21) 

For nonlinear response, which means244 

�⃗� = ε0𝜒𝑒�⃗� + ε0𝜒𝑒
2�⃗� 2 + ε0𝜒𝑒

3�⃗� 3 + ε0𝜒𝑒
4�⃗� 4 + ⋯        (5.22) 

�⃗⃗� = ε0(1 + 𝜒𝑒)�⃗� + ε0𝜒𝑒
2�⃗� 2 + ε0𝜒𝑒

3�⃗� 3 + ε0𝜒𝑒
4�⃗� 4 + ⋯        (5.23) 

Prior to Chapter 5, our focus has been on linear responses. Now, we are tasked with 

introducing nonlinear scenarios. In the context of 2D IR, where three ultrafast laser 

beams (pump-pump-probe) are employed to examine the sample, our consideration 

shifts to the third-order nonlinear response. Here, we must integrate the classical time-

dependent electron field with the quantum mechanics governing molecular vibration 

states. Given this foundation, the temporal response of the material to the external 
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electric field �⃗�  is to be addressed. 

�̂�(𝑡) = −�̂�𝐸(𝑡)        (5.24) 

In which �̂� represents the quantum mechanical operator corresponding to the 

interaction energy between the laser pulse and the molecule. �̂� is the molecule’s dipole, 

indicates how well a medium stores magnetic energy. �̂� and 𝐸(𝑡) are both scalars. 

And the calculations in Eqn. 5.24 have been normalized. 

    he following content, including Equations 5.24–5.68, is derived from the book 

Concepts and Methods of 2D Infrared Spectroscopy by Hamm, Peter and Martin, Zanni 

237. This section presents a concise explanation of the calculation principles underlying 

nonlinear 2D IR spectroscopy. These principles are essential for understanding the 

subsequent development of 2D enhanced spectroscopy. A mixed state of molecules is 

described here, 

�̂�(𝑡) = �̂�0 + �̂�(𝑡) = �̂�0 − �̂�𝐸(𝑡)        (5.25) 

Among these elements, �̂�0 represents the principal component, �̂�(𝑡) stands as the 

perturbation Hamiltonian, with the condition �̂�(𝑡) ≪ �̂�0. This assumption is made 

under the premise that the eigenstate of �̂�0 is denoted as |𝑛⟩. 

The molecular eigenstates |𝑛⟩ of �̂�0 are determined by solving the time-independent 

Schrödinger equation:237 

�̂�0|𝑛⟩ =  𝐸𝑛|𝑛⟩        (5.26) 

And for |𝜓⟩ can be decided by the time-independent Schrödinger equation, 

𝑖ℏ
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ =  �̂�(𝑡)|𝜓(𝑡)⟩ = �̂�(𝑡)|𝜓(𝑡)⟩ − |𝜓(𝑡)⟩�̂�(𝑡) = [�̂�(𝑡), |𝜓(𝑡)⟩]        (5.27) 

Which also written as  
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ = −

𝑖

ℏ
 �̂�(𝑡)|𝜓(𝑡)⟩        (5.28) 

In the absence of an external laser beam, �̂�0 remains time independent. Consequently, 

we can provide the solution for the state |𝛹(𝑡)⟩ as follows: 

|𝜓(𝑡)⟩ = ∑𝑐𝑛(𝑡)

𝑛

|𝑛⟩        (5.29) 

In which 𝑐𝑛 is the probability amplitude. 

This implies that prior to the laser's arrival, the system exists in the ground state. 

Subtract Eqn.5.26 from Eqn.5.29 to get 
𝑑𝑐𝑚(𝑡)

𝑑𝑡
= −

𝑖

ℏ
∑𝐻𝑚𝑛𝑐𝑛(𝑡)

𝑛

        (5.30) 
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The mixed state of the molecule is described by a density matrix as 

𝜌 = ∑𝑝𝑠|𝜓𝑠⟩⟨𝜓𝑠|

𝑠

       (5.31) 

Here, 𝜌  represents the density matrix (or density operator), and |𝜓𝑠⟩  denotes the 

eigenstate corresponding to the density operator. This eigenstate can be interpreted as a 

specific state within the ensemble, characterized by a particular probability. 𝑝𝑠 

represents the associated eigenvalue, which can be understood as the probability of 

occupying the corresponding state. And 

∑𝑝𝑠 = 1

𝑠

        (5.32) 

𝑖ℏ
𝑑

𝑑𝑡
𝜌 = ∑𝑝𝑠𝑖ℏ (

𝑑

𝑑𝑡
|𝜓𝑠⟩⟨𝜓𝑠| + |𝜓𝑠⟩

𝑑

𝑑𝑡
⟨𝜓𝑠|)

𝑠

= ∑𝑝𝑠(�̂�|𝜓𝑠⟩⟨𝜓𝑠| + |𝜓𝑠⟩⟨𝜓𝑠|�̂�)

𝑠

= �̂�𝜌 − 𝜌�̂� = [�̂�, 𝜌]        (5.33) 

Which can be expressed equivalently as: 
𝑑

𝑑𝑡
𝜌 = −

𝑖

ℏ
[�̂�, 𝜌]        (5.34) 

This is the Liouville–von Neumann equation. 

We define the operator �̂� as:245 

�̂� = ∑𝑎𝑠|𝜓𝑠⟩⟨𝜓𝑠|

𝑠

        (5.35) 

Then the expected value of operator 〈�̂�〉 is 

〈�̂�〉 = ∑𝑝𝑠〈𝜓𝑠|�̂� |𝜓𝑠〉

𝑠

= ∑〈𝜓𝑠|�̂��̂� |𝜓𝑠〉

𝑠

= 𝑇𝑟〈�̂��̂�〉 ≡ 〈�̂��̂�〉        (5.36) 

In most of case �̂� is �̂�, which means 

〈�̂�〉 =  𝑇𝑟〈�̂��̂�〉 ≡ 〈�̂��̂�〉       (5.37) 

From Eqn. 5.31 

𝜌𝑛𝑚 = ∑𝑝𝑠

𝑠

𝑐𝑛
𝑠𝑐𝑚

𝑠∗ = 〈𝑐𝑛
𝑠𝑐𝑚

𝑠∗〉        (5.38) 

〈𝑐𝑛
𝑠𝑐𝑚

𝑠∗〉 of the density operator �̂�  are related to a coherence |𝑛⟩⟨𝑚| between states 

|𝑛⟩ and |𝑚⟩ 

〈�̂�〉 = ∑〈𝑐𝑛
𝑠𝑐𝑚

𝑠∗〉 

𝑛𝑚

𝑢𝑚𝑛 = ∑𝜌𝑛𝑚

𝑛𝑚

𝑢𝑚𝑛       (5.39) 

Let’s back to Eqn. 5.25, 

�̂�(𝑡) = �̂�0 + �̂�(𝑡) = �̂�0 − �̂�𝐸(𝑡)         (5.35) 
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with 

�̂�0|𝑛⟩ =  𝐸𝑛|𝑛⟩        (5.2) 

Here the energy and density matrices are defined as follows: 
|𝑛⟩𝐼 = 𝑒𝑖⍵𝑛𝑡|𝑛⟩        (5.40) 

|𝜓(𝑡)⟩⟨𝜓(𝑡)| = 𝑒−
𝑖
ℏ
�̂�0(𝑡−𝑡0)|𝜓𝐼(𝑡)⟩⟨𝜓𝐼(𝑡)|𝑒

+
𝑖
ℏ
�̂�0(𝑡−𝑡0)       (5.41) 

Or 

𝜌(𝑡) = 𝑒−
𝑖
ℏ
�̂�0(𝑡−𝑡0)𝜌𝐼(𝑡)𝑒

+
𝑖
ℏ
�̂�0(𝑡−𝑡0)       (5.42) 

Then the corresponding Liouville–von Neumann equation is 
𝑑

𝑑𝑡
𝜌𝐼(𝑡) = −

𝑖

ℏ
[𝑊�̂�(𝑡), 𝜌𝐼(𝑡)]        (5.43) 

where 𝑊�̂�(𝑡) is the perturbation Hamiltonian 

Correspondingly, 

�̂�(𝑡) = 𝑒−
𝑖
ℏ
�̂�0(𝑡−𝑡0)

𝑊�̂�(𝑡)𝑒
+

𝑖
ℏ
�̂�0(𝑡−𝑡0)       (5.44) 

Write Eqn. 5.34 in integral form 

𝜌𝐼(𝑡) − 𝜌𝐼(𝑡0) = −
𝑖

ℏ
∫ [�̂�𝐼(𝜏), 𝜌𝐼(𝑡)]𝑑𝜏

𝑡

𝑡0

       (5.45) 

It can be solved by iterative calculation 

𝜌𝐼(𝑡) = 𝜌𝐼(𝑡0) + ∑ (−
𝑖

ℏ
)
𝑛∞

𝑛=1

∫ 𝑑𝜏𝑛 ∫ 𝑑𝜏𝑛−1 …∫ 𝑑𝜏1

𝜏2

𝑡0

𝜏𝑛

𝑡0

𝑡

𝑡0

   

[�̂�𝐼(𝜏𝑛), [�̂�𝐼(𝜏𝑛−1), … [�̂�𝐼(𝜏1), 𝜌𝐼(𝑡0)]… ]]     (5.46) 

Substitute into Eqn.5.42 to get 

𝜌(𝑡) = 𝜌(0)(𝑡) + ∑ (−
𝑖

ℏ
)
𝑛∞

𝑛=1

∫ 𝑑𝜏𝑛 ∫ 𝑑𝜏𝑛−1 …∫ 𝑑𝜏1

𝜏2

𝑡0

𝜏𝑛

𝑡0

𝑡

𝑡0

 

∙ 𝑒−
𝑖
ℏ
�̂�0(𝑡−𝑡0) [�̂�𝐼(𝜏𝑛), [�̂�𝐼(𝜏𝑛−1),… [�̂�𝐼(𝜏1), 𝜌(𝑡0)]… ]] 𝑒+

𝑖
ℏ
�̂�0(𝑡−𝑡0)     (5.47) 

Then 

𝜌(𝑡) = 𝜌(0)(𝑡) + ∑ 𝜌(𝑛)(𝑡)

∞

𝑛=1

     (5.48) 

Substituting Eqn. 5.24 into it, we can get 

𝜌(𝑛)(𝑡) = −(−
𝑖

ℏ
)
𝑛

 ∫ 𝑑𝜏𝑛 ∫ 𝑑𝜏𝑛−1 …∫ 𝑑𝜏1

𝜏2

𝑡0

𝜏𝑛

𝑡0

𝑡

𝑡0

𝐸(𝜏𝑛)𝐸(𝜏𝑛−1)…𝐸(𝜏1) 

∙ 𝑒−
𝑖
ℏ
�̂�0(𝑡−𝑡0)[�̂�𝐼(𝜏𝑛), [�̂�𝐼(𝜏𝑛−1), … [�̂�𝐼(𝜏1), 𝜌(𝑡0)]… ]]𝑒+

𝑖
ℏ
�̂�0(𝑡−𝑡0)     (5.49) 
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With 

�̂�𝐼(𝑡) = 𝑒−
𝑖
ℏ
�̂�0(𝑡−𝑡0)�̂�𝑒+

𝑖
ℏ
�̂�0(𝑡−𝑡0)     (5.50) 

The macroscopic polarization, 𝑃(𝑡), which is given by the expectation value of the 

dipole operator �̂� and extract the molecular response, 𝑅(𝑡). 

The macroscopic polarization 𝑃(𝑡)  is the convolution of the external laser's 

electric field 𝐸(𝑡). with the response function 𝑅(𝑡). The content of convolution was 

introduced in Chapter 2.1. 

𝑃(𝑡) ∝ ∫ 𝑅( 𝑡1)
∞

−∞

𝐸(𝑡 − 𝑡1) 𝑑𝑡1(5.51) 

𝑃(𝑡) can be calculated as  

𝑃(𝑡) = 𝑇𝑟〈𝜌(𝑡)�̂� 〉 ≡ 〈𝜌(𝑡) �̂� 〉    (5.52) 

Then for 𝑛 order 𝑃(𝑛)(𝑡) can be expressed as 

𝑃(𝑛)(𝑡) = 𝑇𝑟〈𝜌(𝑛)(𝑡)�̂� 〉 ≡ 〈𝜌(𝑛)(𝑡) �̂� 〉    (5.53) 

Substitute Eqn. 5.49 into Eqn. 5.53, let 𝑡0 → −∞ , 𝜏1 = 0 , 𝑡1 = 𝜏2 − 𝜏1 ,… 𝑡𝑛 =

𝑡 − 𝜏𝑛 to get 

𝑃(𝑛)(𝑡) = −(−
𝑖

ℏ
)
𝑛

 ∫ 𝑑𝜏𝑛 ∫ 𝑑𝜏𝑛−1 …∫ 𝑑𝜏1

𝜏2

−∞

𝜏𝑛

−∞

𝑡

−∞

    

∙ 𝐸(𝑡 − 𝑡𝑛)𝐸(𝑡 − 𝑡𝑛 − 𝑡𝑛−1)…𝐸(𝑡 − 𝑡𝑛 − 𝑡𝑛−1 − ⋯− 𝑡1) 

∙ 〈�̂�(𝑡)[�̂�(𝜏𝑛), [�̂�(𝜏𝑛−1), … [�̂�(𝜏1), 𝜌(−∞)]… ]]〉         (5.54) 

For the convolution of 𝑛 electric fields can be represented by the 𝑛-order nonlinear 

response 𝑅(𝑛). Then 

𝑃(𝑛)(𝑡) = −(−
𝑖

ℏ
)
𝑛

 ∫ 𝑑𝜏𝑛 ∫ 𝑑𝜏𝑛−1 …∫ 𝑑𝜏1

𝜏2

−∞

𝜏𝑛

−∞

𝑡

−∞

 

∙ 𝐸(𝑡 − 𝑡𝑛)𝐸(𝑡 − 𝑡𝑛 − 𝑡𝑛−1)…𝐸(𝑡 − 𝑡𝑛 − 𝑡𝑛−1 − ⋯− 𝑡1) 

∙ 𝑅(𝑛)(𝑡𝑛, 𝑡𝑛−1, … 𝑡1)         (5.55) 

As we mentioned before, 2D IR is third-order nonlinear optics. Then third-order 

response functions 𝑅(3)(𝑡1, 𝑡2, 𝑡3) , through the possible Feynman diagrams (did not 

contains here), contains the rephasing diagram (𝑅1,2,3)  and the non-rephasing 

diagram(𝑅4,5,6),  

𝑅4(𝑡1, 𝑡2, 𝑡3) ∝ 𝑖𝜇01
4 𝑒−𝑖⍵01𝑡1𝑒

−
𝑡1
𝑇2𝑒

−
𝑡2
𝑇1𝑒−𝑖⍵01𝑡3𝑒

−
𝑡3
𝑇2         (5.56) 

𝑅1(𝑡1, 𝑡2, 𝑡3) ∝ 𝑖𝜇01
4 𝑒+𝑖⍵01𝑡1𝑒

−
𝑡1
𝑇2𝑒

−
𝑡2
𝑇1𝑒−𝑖⍵01𝑡3𝑒

−
𝑡3
𝑇2         (5.57) 
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𝑅1,2,3 = 2𝑖𝜇01
4 [𝑒−𝑖⍵01(𝑡3−𝑡1) − 𝑒−𝑖(⍵01−∆)𝑡3−𝑖⍵01𝑡1]𝑒

−
𝑡1+𝑡3

𝑇2          (5.58) 

𝑅4,5,6 = 2𝑖𝜇01
4 [𝑒−𝑖⍵01(𝑡3+𝑡1) − 𝑒−𝑖(⍵01−∆)𝑡3+𝑖⍵01𝑡1]𝑒

−
𝑡1+𝑡3

𝑇2          (5.59) 

Accordingly, the corresponding third-order macroscopic polarization is246 

𝑃(3)(𝑡3, 𝑡2, 𝑡1) ∝ ∫ 𝑑𝑡3 ∫ 𝑑𝑡2 ∫ 𝑑𝑡1 ∑𝑅𝑛

𝑛

(𝑡3, 𝑡2, 𝑡1)𝐸3(𝑡 − 𝑡3)
∞

−∞

∞

−∞

∞

−∞

∙ 𝐸2(𝑡 − 𝑡3−𝑡2)𝐸1(𝑡 − 𝑡3−𝑡2−𝑡1)           (5.60) 

The macro signal field 𝐸𝑠𝑖𝑔(𝑡) is generated by the macroscopic polarization 𝑃(𝑡). 

There is a 90° phase difference between 𝐸𝑠𝑖𝑔(𝑡) and 𝑃(𝑡) in the frequency domain, 

which corresponds to multiplying by 𝑖 in the time domain. This part is similar to the 

Hilbert transform. See chapter 2.2 for details. 

𝐸𝑠𝑖𝑔(𝑡) = 𝑖𝑃(𝑡)         (5.61) 

𝐸𝑠𝑖𝑔
(3)(𝑡) =  𝑖𝑃(3)(𝑡3, 𝑡2, 𝑡1) = 𝑖𝑇𝑟〈𝜌(𝑛)(𝑡)�̂� 〉         (5.62) 

Then the final detected signal is 

𝑆(𝑡1, 𝑡2) = ∫ |𝐸𝑠𝑖𝑔
(3)(𝑡3; 𝑡1, 𝑡2)|

2 𝑑𝑡3

∞

0

            (5.63) 

When adding a laser pulse as the so-called local oscillator (LO), the result can be 

obtained as: 

𝑆(𝑡𝐿𝑂; 𝑡1, 𝑡2) ∝ ∫ |𝐸𝐿𝑂(𝑡3 − 𝑡𝐿𝑂) + 𝐸𝑠𝑖𝑔
(3)(𝑡3; 𝑡1, 𝑡2)|

2

 𝑑𝑡3

∞

0

≈ 𝐼𝐿𝑂 + 2ℛ ∫ |𝐸𝐿𝑂(𝑡3 − 𝑡𝐿𝑂) ∗ 𝐸𝑠𝑖𝑔
(3)(𝑡3; 𝑡1, 𝑡2)|

2

 𝑑𝑡3

∞

0

          (5.64) 

In an ideal scenario, laser pulses are utilized. 

𝐸(𝑡)  ∝ 𝛿(𝑡)𝑒±𝑖⍵𝑡∓𝑖𝑘𝑟 ∓𝑖𝜙         (5.65) 

Then the obtained third-order signal field is 

𝐸𝑠𝑖𝑔
(3)(𝑡1, 𝑡2, 𝑡3) ∝ 𝑒𝑖(∓𝑖�⃗� 1±�⃗� 2+�⃗� 3)𝑟 𝑒𝑖(∓𝑖𝜙1±𝜙+𝜙3) ∑𝑖𝑅𝑛(𝑡1, 𝑡2, 𝑡3)

𝑛

          (5.66) 

Where the symbols +,−  are depended on 𝑅𝑛 (the rephasing diagrams  or the non-

rephasing diagrams). 

The signal obtained after passing the heterodyne detection (this part will be 

introduced in detail in Chapter 5.3) is 

𝑆(𝑡1, 𝑡2, 𝑡3) ∝ 𝐸𝐿𝑂 ∗ 𝐸𝑠𝑖𝑔
(3)

∝ 𝑒𝑖(∓𝑖𝜙1±𝜙2+𝜙3−𝜙𝐿𝑂) ∑𝑖𝑅𝑛(𝑡1, 𝑡2, 𝑡3)

𝑛

         (5.67) 

After 2D FT 
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𝑆(⍵3, 𝑡2, ⍵1) ∝ ∫ ∫ 𝑒𝑖⍵1𝑡1+𝑖⍵3𝑡3 ∙ 𝑆(𝑡1, 𝑡2, 𝑡3)
∞

0

∞

0

 𝑑𝑡1𝑑𝑡3

= ∫ ∫ 𝑒𝑖⍵1𝑡1+𝑖⍵3𝑡3 ∙ ∑𝑖𝑅𝑛(𝑡1, 𝑡2, 𝑡3)

𝑛

∞

0

∞

0

 𝑑𝑡1𝑑𝑡3         (5.68) 

That is also written as: 

𝑆(⍵𝜏, ⍵𝑚, 𝑇⍵) ∝ ∫ ∫ 𝑆(𝜏, 𝑇⍵, 𝑡3) ∙ 𝑒∓𝑖⍵𝑚(𝑡3+𝜏)𝑑𝑡3𝑑𝜏
∞

0

∞

0

    (5.19) 
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5.3 Enhancement in 2D IR 

1. Calculation in 1D 

In the preceding section, a comprehensive examination was conducted on the 

generation principles of 2D IR signal and its associated computations. As revealed in 

the literature, akin to the one-dimensional infrared (1D IR) spectra, 2D IR spectra also 

exhibit spectral distortion and signal enhancement115, 247-249. The fundamental cause for 

the phenomenon of spectral distortion in both 1D and 2D spectra lies in the application 

of ATR-FTIR for sample testing, where the refractive index of the substance being 

measured is either partially or entirely greater than the critical refractive index. 

However, a distinct enhancement is observed in the realm of 2D IR, specifically, the 

spectral enhancement phenomenon near the Brewster Angle. This phenomenon 

diverges significantly from the behavior observed in 1D spectra. 

Drawing insights from Fayer's discourse250, 251, a remarkable enhancement in the 

signal-to-noise (S/N) ratio is evident in this geometry compared to a conventional 

transmission pump-probe geometry signal. The heightened S/N ratio is attributed to the 

substantial modulation of the local oscillator (LO) field induced by the nonlinear signal 

field. This chapter delves into the principles and influencing factors of this phenomenon, 

building upon the existing literature. Subsequently, the subsequent chapter will 

elaborate on the constraints of this enhancement and highlight distinctions from the 

enhanced spectrum observed in 1D. 

 

Fig. 5.8 Snell’s law(A), Brewster angle (B) and Critical angle (C)  

According to Snell’s law, as showed in Fig. 5.8A 

𝑛1 𝑠𝑖𝑛𝜃1 = 𝑛2(𝜔) 𝑠𝑖𝑛𝜃2                 (5.69) 

If the angle between the reflected light and the refracted light measures 90°, the 

incident angle 𝜃1 at this specific juncture is designated as the Brewster Angle 𝜃𝐵, as 

(A) 
(B) (C) 
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illustrated in Figure 5.8B. 

𝜃𝐵 = 𝑡𝑎𝑛−1 (
𝑛2

𝑛1
)                 (5.70) 

And Brewster Angle 𝜃𝐵  exists whether light is incident from an optically dense 

medium to an optically sparse medium or from an optically sparse medium to an 

optically dense medium. We first conclude that there is a maximum surface 

enhancement of the two-dimensional nonlinear infrared spectrum near Brewster Angle 

𝜃𝐵. See later chapters for specific derivation and explanation. 

If the angle between the refracted light and the normal is 90°, i.e., 𝜃2 = 90°, at this 

juncture, the incident light undergoes total internal reflection. The incident angle  𝜃1 

at this moment is denoted as the critical angle 𝜃𝐶 , as showed in Fig. 5.8C. 

𝜃𝐶 = 𝑠𝑖𝑛−1 (
𝑛2

𝑛1
)                 (5.71) 

It is noteworthy that this circumstance occurs when light travels from an optically 

dense medium to an optically sparse medium, i.e., 𝑛1 > 𝑛2.  

Fig. 5.9 Relationship between 
𝑛2

𝑛1
 and 𝜃𝐵, 𝜃𝑐 . 

As depicted in Fig. 5.9, the comprehensive illustration delineates two distinct 

segments: the transition of light intensity from dense to sparse (depicted in yellow) and 
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from sparse to dense (depicted in blue). These segments are further partitioned by 

angles 𝜃𝐵 and 𝜃𝑐. Following the elucidation of the fundamental operational principle, 

Fresnel's law, an examination of each delineated region ensues sequentially.  Moreover, 

it is readily discernible from Fig. 5.9 that 𝜃𝐶 > 𝜃𝐵. 

Fig. 5.10 Relationship between 
𝑛2

𝑛1
  and 𝜃𝐵 , 𝜃𝑐  with highlighted area of distorted 

spectrum in ATR (left) and with highlighted area of surface-enhanced spectrum in ATR 

(right). 

Drawing from the insights presented in Chapter 1, it becomes evident that within 

ATR114, that is, when light is incident from an optically dense medium to an optically 

sparse medium, when 𝜃1 ≤ 𝜃𝐶 , the resulting spectrum may exhibit distortion or even 

inversion. Area as depicted in the left portion of Fig. 5.10, highlighted by the dark blue 

focal region enveloped by asterisks.  

Conversely, informed by the discourse in Chapter 4, it is established that under ATR 

conditions, provided the prerequisites for surface plasmon excitation are satisfied, an 

enhanced spectrum can be attained248, 252, 253. This is exemplified by the red focus area 

in the right segment of Figure 5.10. (For the present discussion, the focus is on bulk 

phenomena, excluding considerations of isolated surface plasmons arising from metal 

nanoparticles.) 

It is noteworthy that the augmented and distorted spectra elucidated previously 

persist across both 1D ATR-FTIR spectroscopy and 2D ATR-FTIR spectroscopy 

methodologies. 
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Utilizing the formula derived from Maxwell's equations in Chapter 1, we can perform 

the following calculations: 

𝑟𝑠 =
𝑛1𝑐𝑜𝑠𝜃1 − 𝑛2𝑐𝑜𝑠𝜃2

𝑛1𝑐𝑜𝑠𝜃1 + 𝑛2𝑐𝑜𝑠𝜃2
                  (5.72) 

𝑟𝑝 =
𝑛2𝑐𝑜𝑠𝜃1 − 𝑛1𝑐𝑜𝑠𝜃2

𝑛2𝑐𝑜𝑠𝜃1 − 𝑛1𝑐𝑜𝑠𝜃2
                  (5.73) 

𝑅𝑠 = |𝑟𝑠|
2                     (5.74) 

𝑅𝑝 = |𝑟𝑝|
2
                   (5.75) 

𝑅 =
𝑅𝑠 + 𝑅𝑝

2
                (5.76) 

𝐴𝑠 = −𝑙𝑔𝑅𝑠                (5.77) 

𝐴𝑝 = −𝑙𝑔𝑅𝑝               (5.78) 

 𝐴 = −𝑙𝑔𝑅                (5.79) 

Fig. 5.11 R and A with 𝑛1 = 1，𝑛2 = 1.4. 

When considering the condition where light is propagating from an optically sparse 

medium to an optically dense medium, specifically light incidence from air into SiO2, 

with refractive indices 𝑛1 = 1 and 𝑛2 = 1.4, and varying the incident angle from 0° 

to 90°, the corresponding refraction and absorption diagrams can be derived, as 

illustrated in Fig. 5.11. 

The observations from Figure 5.11 clearly indicate significant changes in the 

emission and absorption of p-polarized light in close proximity to the Brewster angle. 

This noteworthy alteration serves as a crucial foundation for the subsequent discussion 

on the observable enhancements near the Brewster angle in 2D IR, which will be 

explored in the following section. 

Indeed, it is pertinent to highlight that when light traverses from an optically dense 

medium to an optically sparse medium, the phenomenon of Brewster angle remains 

(A) (B) 
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significant as showed in Fig.5.12. Notably, for p-polarized light, the emission and 

absorption characteristics in proximity to the Brewster angle undergo substantial 

alterations. Furthermore, it is imperative to acknowledge that analogous enhancement 

effects are observable in the context of 2D IR spectroscopy. 

Fig. 5.12 Relationship between 
𝑛2

𝑛1
 and 𝜃𝐵, 𝜃𝑐 with highlighted curve of surface-

enhanced spectrum in 2D IR. 

However, it merits attention that the condition 𝜃𝐵 < 𝜃𝐶   pertains to light 

transitioning from an optically dense medium to an optically sparse medium. In the 

context of ATR, when there is absorption by the substance, the resulting signal may 

exhibit distortion. Therefore, it is not advisable to utilize the signal obtained under such 

circumstances as an indicator of enhanced signal quality. 

For 3 layers, the calculation is the same like in Chapter 4 as follows 

�̂�𝑖 = 𝑛𝑖 + 𝑘𝑖   (𝑖 = 1,2,3)                  (5.80) 

𝑚1 = �̂�1cos 𝜃1                 (5.81) 

𝑚𝑖 = √�̂�𝑖
2 − �̂�1

2𝑠𝑖𝑛2𝜃1     (𝑖 = 2,3,4)                   (5.82) 

𝑟𝑖𝑗,𝑠 =
𝑚𝑖−𝑚𝑗

𝑚𝑖+𝑚𝑗 
，𝑟𝑗𝑖,𝑠 =

𝑚𝑗−𝑚𝑖

𝑚𝑖+𝑚𝑗 
= −𝑟𝑖𝑗,𝑠,  𝑡𝑖𝑗,𝑠 =

2𝑚𝑖

𝑚𝑖+𝑚𝑗 
,  𝑡𝑗𝑖,𝑠 =

2𝑚𝑗

𝑚𝑖+𝑚𝑗 
    (5.83) 
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𝑟𝑖𝑗,𝑝 =
�̂�𝑖

2𝑚𝑗−�̂�𝑗
2𝑚𝑖

�̂�𝑖
2𝑚𝑗+�̂�𝑗

2𝑚𝑖 
, 𝑟𝑗𝑖,𝑝 =

�̂�𝑗
2𝑚𝑖−�̂�𝑖

2𝑚𝑗

�̂�𝑖
2𝑚𝑗+�̂�𝑗

2𝑚𝑖 
= −𝑟𝑖𝑗,𝑝, 

𝑡𝑖𝑗,𝑝 =
2�̂�𝑖

2𝑚𝑗

�̂�𝑖
2𝑚𝑗+�̂�𝑗

2𝑚𝑖 
, 𝑡𝑗𝑖,𝑝 =

2�̂�𝑗
2𝑚𝑖

�̂�𝑖
2𝑚𝑗+�̂�𝑗

2𝑚𝑖 
                 (5.84) 

𝜙2 = 2𝜋𝑣𝑑2𝑚2 = 2𝜋𝑣𝑑2√�̂�2
2 − �̂�1

2𝑠𝑖𝑛2𝜃1 = 2𝜋
𝑑2

𝜆 
𝑚2                  (5.85) 

𝑟123 =
𝑟12+ 𝑟23 𝑒𝑥𝑝(2𝑖ϕ2)

1+ 𝑟12𝑟23 𝑒𝑥𝑝(2𝑖ϕ2)
                 (5.86)  

𝑡123 =
𝑡12 𝑡23 𝑒𝑥𝑝(𝑖ϕ2)

1+ 𝑟12𝑟23 𝑒𝑥𝑝(2𝑖ϕ2)
                  (5.87) 

𝑅 = 𝑅123 = |𝑟123|
2                 (5.88) 

𝑇 = 𝑇123 = |
𝑛1

𝑛3 
𝑡123|

2

                 (5.89) 

2. Enhancement in 2D IR 

Building upon the knowledge from the preceding chapter, it is understood that 2D 

IR operates on the principles of third-order nonlinear optics. The specific spectrum 

enhancement principles of Eqs 5.90-5.105 are detailed in the literatures245, 250, 251. In 

which the signal light field is generated by the joint action of two pump light fields and 

a probe light field that is: 

|𝐸𝑠𝑖𝑔| ∝ |𝐸𝑝𝑟||𝐸𝑝𝑢|
2
                 (5.90) 

The final signal S is modulated by adding a signal from the local oscillator (LO) 

field on the basis of the third-order signal light field, this can be expressed as: 

𝑆1(𝜔) ∝ |𝐸𝐿𝑂(𝜔) + 𝐸𝑠𝑖𝑔(𝜔)|
2
= |𝐸𝐿𝑂(𝜔)|2 + 2𝑅𝑒𝐸𝑠𝑖𝑔(𝜔)𝐸𝐿𝑂(𝜔) + |𝐸𝑠𝑖𝑔(𝜔)|

2
      

≈ |𝐸𝐿𝑂(𝜔)|2 + 2𝑅𝑒𝐸𝑠𝑖𝑔(𝜔)𝐸𝐿𝑂(𝜔)                 (5.91) 

The omission of |𝐸𝑠𝑖𝑔(𝜔)|
2
 is justified by the condition |𝐸𝑠𝑖𝑔(𝜔)| ≪ |𝐸𝐿𝑂(𝜔)|. 

Given that the pump light undergoes periodic obstruction by the optical cutter, 

resulting in the absence of third-order optical signal generation, only the LO signal is 

detected during these intervals. This is expressed as: 

𝑆2(𝜔) ∝ |𝐸𝐿𝑂(𝜔)|2                 (5.92) 

Subsequently, the ultimate signal is given by: 

𝑆(𝜔) =
𝑆1(𝜔)

𝑆2(𝜔) 
∝

𝑅𝑒𝐸𝑠𝑖𝑔(𝜔)𝐸𝐿𝑂(𝜔)

|𝐸𝐿𝑂(𝜔)|2 
                 (5.93) 

For transmission  

𝐸𝐿𝑂(𝜔) = 𝐸𝑝𝑟(𝜔)                 (5.94) 

The corresponding transmitted final signal can be expressed as: 
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𝑆𝑡(𝜔) ∝
𝑅𝑒𝐸𝑠𝑖𝑔(𝜔)𝐸𝑝𝑟(𝜔)

|𝐸𝑝𝑟(𝜔)|
2
 

                   (5.95) 

For reflections 

𝐸𝐿𝑂(𝜔) = 𝑟(𝜔) 𝐸𝑝𝑟(𝜔)                 (5.96) 

r(ω) is reflectance 

𝑆𝑟(𝜔) ∝
𝑅𝑒𝐸𝑠𝑖𝑔(𝜔)(𝜔)𝐸𝑝𝑟(𝜔)

|𝑟(𝜔)𝐸𝑝𝑟(𝜔)|
2
 

  =  − 
𝑅𝑒𝐸𝑠𝑖𝑔(𝜔)𝐸𝑝𝑟(𝜔)

𝑟(𝜔)|𝐸𝑝𝑟(𝜔)|
2
 

                 (5.97) 

𝑆𝑡(𝜔) ∝ −𝑆𝑟(𝜔) 𝑟(𝜔)                 (5.98) 

Alternatively, it can be written as: 

𝑆𝑟(𝜔) ∝ −
1

𝑟(𝜔)
𝑆𝑡(𝜔)                  (5.99) 

Then the signal increase factor between the reflection spectrum and transmission 

spectrum is 

𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 = −
1

𝑟(𝜔)
                 (5.100) 

If the refractive index 𝑛2(𝜔)is changing with wavelength (or wavenumber), then this 

equation can be written as  

𝑟𝑝(𝜔) =
𝑛2(𝜔)𝑐𝑜𝑠𝜃1 − 𝑛1𝑐𝑜𝑠𝜃2

𝑛2(𝜔)𝑐𝑜𝑠𝜃1 − 𝑛1𝑐𝑜𝑠𝜃2
                 (5.101) 

Then 

𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 = −
1

𝑟(𝜔)
                  (5.102) 

When the influence of s-polarized light is not taken into account. 

However, when considering the leakage of s-polarized light, under these 

circumstances, the signal light does not interfere with the s light. The leaked s-polarized 

light does not impact 𝑅𝑒𝐸𝑠𝑖𝑔(𝜔)𝐸𝑝𝑟(𝜔)  but solely influences |𝐸𝑝𝑟(𝜔)|
2
 . Let 𝑚 

denotes the leakage coefficient of s-polarized light, signifying: 

𝑚 = 
|𝐸𝑝𝑟,𝑠(𝜔)|

 |𝐸𝑝𝑟,𝑝(𝜔)| 
                 (5.103) 

Here, we consider 𝑚 =  0.0001, 

Then  

𝑆𝑟(𝜔) ∝ −
𝑟𝑝(𝜔)

|𝑟𝑝(𝜔)|
2
+ 𝑚|𝑟𝑠(𝜔)|2 

𝑆𝑡(𝜔) = −
𝑟𝑝(𝜔)

𝑅𝑝 + 𝑚𝑅𝑠 
𝑆𝑡(𝜔)                 (5.104) 

Then 
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𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 = −
𝑟𝑝(𝜔)

𝑅𝑝 + 𝑚𝑅𝑠 
                 (5.105) 

The parameter 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 holds significant relevance with respect to the Brewster angle 

and is evident in transitions from optically dense to optically sparse media as well as 

vice versa. However, owing to its association with LO modulation, this particular form 

of surface enhancement is exclusive to 2D IR spectroscopy, and is not observable within 

the realm of one-dimensional infrared 1D IR spectroscopy. 
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3. Brewster angle 

 

 
Fig. 5.13 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 changing with incident angle 𝜃1 = 0° − 90° (A) (𝑛1 = 1，𝑛2 =

1.4); 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 changing with wavenumber and incident angle 𝜃1 = 50° − 60° (B); 

1

𝑟𝑝 
,  

1

𝑅𝑝 
 and 𝐴𝑝 changing with wavenumber and incident angle (C).  

As observed prominently in Fig. 5.13, 𝜃𝐵𝑟𝑒𝑤𝑠𝑡𝑒𝑟 𝐴𝑛𝑔𝑙𝑒 = 54.46°  , near the 

Brewster Angle, 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒  undergoes significant variations, aligning with the 

description provided by Fayer in the paper251. This observation also concurs with the 

explanation presented in our preceding chapter. 

It is important to note that in this context, we maintain the assumption that 

𝑛2(𝜔) = 1.4 remains a constant value. Furthermore, the anisotropy of the material and 

alterations in the refractive index due to the incident laser are not taken into 

consideration. It is crucial to acknowledge that, in reality, these factors could introduce 

added complexity to the situation. For a detailed calculation process, please refer to the 

(A) (B) 

(C) 
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supporting information provided in Fayer's papers250, 251, 254.  

Next, we will analyze the implications of varying the value of 𝑛2(𝜔) with changes 

in 𝜔.255 

𝑛2(𝜔) = √1.33973 +
0.69913𝜆2

𝜆2 − 0.093742
+

0.11994𝜆2

𝜆2 − 21.182
+

4.3518𝜆2

𝜆2 − 38.462
                 (5.106) 

Fig. 5.14 𝑛2(𝜔) (A) and 𝜃𝐵(𝜔) (B) changing with wavenumber; 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒  changing 

with wavenumber and incident angle(C); 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 changing with wavenumber(D). 

As evident from Fig. 5.14, the alteration of 𝑛2(𝜔) with 𝜔  results in a 

corresponding change in 𝜃𝐵(𝜔). This, in turn, leads to variations in the maximum value 

of 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒  with 𝜔  at different incident angles. While most of the aforementioned 

aspects have been discussed in detail, we will refrain from delving into further 

intricacies at this juncture. 

The initial point we intend to clarify is that the underlying reason for the variation 

in 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 with 𝜔 lies in the changes of 𝑛2(𝜔), leading to the attainment of 𝜃𝐵(𝜔) 

at different 𝜔 values. It is crucial to note that this phenomenon does not alter the fact 

that 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 is maximized near the Brewster angle. To simplify matters and avoid 

(A) 
(B) 

(C) (D) 
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complexity, we will refrain from further emphasis on this particular scenario in our 

subsequent discussions. 

The focus of our subsequent discussion centers on the addition of a 

Carbon((Sample 1 discussed in Chapter 1)) thin layer to the interface(normally gold is 

used in simulation256), as illustrated in Fig. 5.15. 
 

Fig. 5.15. 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒  changing with 

wavenumber and thickness(𝑑). 
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The evident variation in 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒  near the Brewster Angle, reaching both 

maximum and minimum values on both sides, is notable in Fig. 5.15. However, it's 

crucial to highlight that the magnitude of 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒  is entirely different when the 

thickness varies.  

It is important to highlight that in Fig. 5.15 our comparison extends beyond the 

values of 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 = −
1

𝑟𝑝(𝜔)
 ; we also consider the values of 

1

𝑟𝑝 
 ,  

1

𝑅𝑝 
  and 𝐴𝑝 . We 

present an initial observation that, when focusing solely on angle-dependent 𝐴𝑝, the 

observed trend aligns with the trend of 
1

𝑟𝑝
 . This alignment is inherent as 𝐴𝑝  is 

fundamentally derived from 
1

𝑟𝑝
.  

Combining the preceding calculations and the corresponding Fig. 5.15, it becomes 

evident that 
1

𝑟𝑝 
,  

1

𝑅𝑝 
，and 𝐴𝑝 are fundamentally equivalent, albeit with differing orders 

of magnitude in the calculations. 

Fig. 5.16 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒  changing with incident angle, thickness (  𝑑 ) and absorption 

coefficients (𝑘 ). Set 𝑛 = 1.4 + 0.1𝑖(𝐴) ; 𝑛 = 1.4 + 1𝑖(𝐵)  ; 𝑛 = 1.4 + 3𝑖(𝐶)  ; 𝑛 =

1.4 + 10𝑖(𝐷). 

Subsequently, to enhance clarity in illustrating the influence of the thickness and 

(A) (B) 

(C) (D) 
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refractive index of the intermediate dielectric layer on R-Enhance, we maintain the 

assumption that 𝑛𝑆𝑖𝑂2𝐶𝑎𝐹2
(𝜔) = 1.4, noting that this corresponds to the third layer. The 

refractive index of the intermediate layer is represented as 𝑛2 = 𝑛 + 𝑖𝑘 = 1.4 + 𝑖𝑘 . 

The summarized findings are depicted in Fig.5.16 

We conducted a comparative analysis across various absorption coefficients (𝑘). 

Notably, when 𝑘 = 0.1 with a thickness (d) of 100nm, 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 attains its maximum 

value. Similarly, at 𝑘 = 1  and 𝑑 = 0.1nm , 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒  reaches its maximum. 

Furthermore, for 𝑘 = 3  and 𝑑 = 1nm , 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒  achieves its highest value. 

Additionally, for cases where 𝑘 ≥ 10  and there is no specified thickness, 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 

attains its maximum value. Importantly, the conclusion remains consistent even when 

altering the refractive index (𝑛). 

As highlighted by Fayer in the paper, adopting 
𝑑

𝜆
 as the abscissa and exclusively 

considering the scenario where the incident angle is 𝜃 = 54°  (approximating the 

Brewster angle), at a wavenumber of approximately ~2025 𝑐𝑚−1 (the specific choice 

of wavenumber is not a critical factor at this juncture), the calculated signal diagram 

for the reflection situation is depicted in Fig. 5.16. 

 
Fig. 5. 17 Reflection pattern signal fields of different thicknesses with 𝜃 = 54°  at 

~2025 𝑐𝑚−1. 

In reality, if 
𝑑

𝜆
 continues to increase, the signal will persist in oscillating until it 

eventually decays to zero. However, the fundamental nature of this phenomenon is 

attributed to the calculation process of 𝑅𝑝.  

Referring to Eqs. 5.85 ~ 5.88, it can be deduced that: 
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𝑅 ∝ 𝑒𝑥𝑝(4𝑖ϕ2) ∝ exp (𝑖
𝑑2

𝜆 
) = cos (

𝑑2

𝜆 
) + 𝑖𝑠𝑖𝑛 (

𝑑2

𝜆 
)                 (5.107) 

Therefore, the intrinsic cause of the cyclic oscillation and decay in the signal is 

determined by the periodic function concerning 
𝑑

𝜆
. This phenomenon is present at any 

wavenumber and for any incident angle with phase delay. 

As our primary focus is not solely on the enhancement phenomenon near the 

Brewster angle, and considering that this aspect has been thoroughly addressed, we will 

refrain from providing further elaboration on it in the subsequent chapters. 

In the subsequent section, we will delve into and the surface enhancement spectrum as 

it transitions from an optically dense medium to an optically sparse medium.  
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4. Optically dense to optically sparse 

In the preceding section, we explored the scenario of light transitioning from an 

optically sparse medium to an optically dense medium. Now, we shift our focus to the 

transition from an optically dense medium to an optically sparse medium, assuming the 

medium to be diamond with 𝑛𝐷𝑖𝑎𝑚𝑜𝑛𝑑 = 2.41  and 𝑛𝑆𝑖𝑂2𝐶𝑎𝐹2
= 1.4 . Through 

calculations, the obtained results are illustrated in the figure. 

  

 

Fig. 5.18 R and A changing with incident 

angle with 𝑛1 = 2.41，，𝑛2 = 1.4 (A, B); 

𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 changing with incident angle(C). 

 

 

 

As depicted in Fig. 5.18, it is evident that when light transitions from the optically 

dense medium to the beam medium, both the Brewster Angle 𝜃𝐵 and the Critical Angle 

𝜃𝐶  are present. And normally 𝜃𝐶 ≥ 𝜃𝐵 

Having previously explored the distorted spectrum near the Critical Angle in 

Chapters 1 and 2, and delved into the surface-enhanced spectrum in Chapter 4, we now 

turn our attention to the Brewster Angle 𝜃𝐵  and examine the enhancement near 𝜃𝐵 

when transitioning from optically dense to optically sparse media. Similar to the 

previous section, we can derive analogous 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒  values, but now with opposite 

directions in both positive and negative axes.  

(A) 
(B) 

(C) 
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Fig. 5.19 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒  changing with incident angle, thickness ( 𝑑 ) and absorption 

coefficients (𝑘 ). Set 𝑛 = 1.4 + 0.1𝑖(𝐴) ; 𝑛 = 1.4 + 1𝑖(𝐵) ; 𝑛 = 1.4 + 3𝑖(𝐶) ; 𝑛 =

1.4 + 10𝑖(𝐷). 

We conducted a comparative analysis considering various absorption coefficients 

(𝑘) for the intermediate layer in Fig. 5.19. Notably, when 𝑘 = 0.1, 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 attains its 

maximum value at different thicknesses (𝑑). It's important to note that, due to variations 

in the refractive index of both the input and refractive media from the preceding section, 

𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 achieves its maximum value. While there are slight differences in the specific 

maximum values, they are generally obtained at extremely thin thicknesses, such as 

𝑑 = 1𝑛𝑚  or 𝑑 = 0.11𝑛𝑚 . However, unlike incidents from air, the scenario of 

𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 undergoes changes when altering the refractive index (𝑛) of the intermediate 

layer.  

(A) (B) 

(C) (D) 
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Fig. 5.20 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 changing with incident angle, thickness (𝑑), refractive index (𝑛). 

Set 𝑛 = 1 + 0.1𝑖(𝐴); 𝑛 = 2 + 0.1𝑖(𝐵); 𝑛 = 2.4 + 0.1𝑖(𝐶); 𝑛 = 3 + 0.1𝑖(𝐷);  𝑛 =

5 + 0.1𝑖(𝐸); 𝑛 = 10 + 0.1𝑖(𝐹). 

Diverging from the previous section, we extend our consideration to additional 

cases, specifically those involving a continuously changing refractive index (𝑛) of the 

intermediate layer (𝑛2 = 𝑛 + 𝑖𝑘). When the refractive index of the intermediate layer 

(𝑛) is less than 𝑛1, its impact on 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 is confined to the data size. Additionally, 

when the refractive index (𝑛) of the intermediate layer approaches the refractive index 

(A) (B) 

(C) (D) 

(E) (F) 
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of the incident medium, 𝑛1 = 2.41  ( 2 < 𝑛 < 3 ), 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 exhibits notable 

fluctuations.  

In scenarios where the refractive index of the intermediate layer significantly exceeds 

that of the incident medium (𝑛 > 5), for small thicknesses (𝑑), it can still be treated as 

a thin layer. Conversely, for large thicknesses, it is regarded as an independent second 

layer.
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Fig. 5.21 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 changing with incident angle, thickness (𝑑), refractive index (𝑛). 

(A) 

 

(E) 

(C) 

(B) 

(D) 

(G) 

(F) 

(H) 
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Set 𝑑 = 0.1𝑛𝑚 (𝐴) ; 𝑑 = 1𝑛𝑚 (𝐵) ; 𝑑 = 10𝑛𝑚 (𝐶) ; 𝑑 = 100𝑛𝑚 (𝐷);  𝑑 =

1𝑢𝑚 (𝐸); 𝑑 = 10𝑢𝑚 (𝐹) ; 𝑑 = 100𝑢𝑚 (𝐺);  𝑑 = 1𝑚𝑚 (𝐻). 

The distinct observation from Fig 5.21 is that, with the continued increase in the 

refractive index (𝑛) of the intermediate layer, the thin-layer paradigm persists for cases 

with small thickness ( 𝑑 < 1𝑛𝑚 ), allowing us to disregard the impact of the 

intermediate layer. However, when d is larger (𝑑 > 10𝜇𝑚), it should be treated as an 

independent second layer, reiterating the previously discussed transition from an 

optically sparse to an optically dense medium. 

In the range of 10𝑛𝑚 < 𝑑 < 100𝑛𝑚 , although the refractive index (𝑛 ) of the 

intermediate layer can exert some influence, the overall trend of 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒  remains 

relatively consistent. The most intriguing scenario emerges in the case of 1𝑛𝑚 < 𝑑 <

10𝜇𝑚, where the thickness is close to half-wavelength. In this instance, as the refractive 

index (𝑛) continues to rise, 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 undergoes a distinct transformation, presenting a 

wholly different state. 
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5.4 Comparison 

In Chapter 4, we conducted a comparative analysis of the impact of thin layers with 

varying thicknesses and shapes on ATR-FTIR surface enhancement. Of particular 

significance was the observation of the enhancement mechanism near the critical angle. 

Subsequently, in Chapter 5, Section 3, we delved into the influence of the Brewster 

angle on the 2D enhancement mechanism IR257. The objective now is to elucidate the 

relationship and function between these two phenomena, and this will be addressed in 

the current chapter. 

It is noteworthy that our discussion exclusively revolves around the enhancement 

mechanism under variable incident angles, specifically excluding considerations of 

transmission enhancement. 

First and foremost, we draw the conclusion that the primary contributor to the 

enhancement observed in the Brewster Angle effect is the unique nature of the 2D 

spectrum. This enhancement effect, derived from the interplay of incident angles 

generated by the pump and probe, undergoes a significant transformation in proximity 

to the Brewster angle. Notably, altering thickness at the same angle does not exert the 

most pronounced impact. Specifically, the changes in 
1

𝑟𝑝 
 ,  

1

𝑅𝑝 
  and 𝐴𝑝  are most 

substantial in the vicinity of the Brewster Angle. 

The enhancement associated with the critical angle exhibits greater resemblance to 

the refractive index and thickness of the medium. While the alteration in spectral 

enhancement may not be most prominent near the critical angle, the change induced by 

variations in thickness has the most significant influence in close proximity. 

Specifically, the change in 𝐴𝑝𝑑/𝐴𝑝 are most substantial in the vicinity of the critical 

angle. (Here, 𝐴𝑝𝑑 denote absorption with a thin layer). 

Subsequently, we will bifurcate the scenario into two distinct situations: incident 

from an optically dense medium to an optically sparse medium, and incident from an 

optically sparse medium to an optically dense medium. Each situation will be discussed 

individually. 

In the first scenario, where an optically dense medium is incident on an 

optically sparse medium. 
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In accordance with the data presented in Figure 5.20, it is evident that the most 

substantial alterations in the ratios 𝑟𝑝/𝑟𝑝𝑑  and 𝑅𝑝/𝑅𝑝𝑑  occur at the Brewster 

Angle( 𝜃𝐵 = 35.51° , 𝜃𝑐 = 30.15° ). This observation aligns consistently with the 

findings expounded upon in the preceding chapter. 

 

Fig. 5.22 𝑟𝑝/𝑟𝑝𝑑  and 𝑅𝑝/𝑅𝑝𝑑  changing with wavenumber and incident angle 

(𝑛𝐷𝑖𝑎𝑚𝑜𝑛𝑑 = 2.41, Carbon is sample 1 from Chapter1). The difference is 𝑛𝑆𝑖𝑂2𝐶𝑎𝐹2
=

1.4(Left); 𝑛𝑆𝑖𝑂2𝐶𝑎𝐹2
changing with wavenumber (Right) 

However, a noteworthy observation emerges in Fig.5.22. As the incident angle 

approaches the Critical Angle (𝜃𝐵 = 35.51°, 𝜃𝑐 = 30.15°), the ratio 𝐴𝑝𝑑/𝐴𝑝 abruptly 

becomes indeterminate.  

 

Fig. 5.23 𝐴𝑝𝑑/𝐴𝑝 changing with wavenumber and incident angle (𝑛𝐷𝑖𝑎𝑚𝑜𝑛𝑑 = 2.41, 

Carbon is sample 1 from Chapter1). The difference is 𝑛𝑆𝑖𝑂2𝐶𝑎𝐹2
= 1.4 (Left); 

𝑛𝑆𝑖𝑂2𝐶𝑎𝐹2
changing with wavenumber (Right).  

This occurrence is attributed to the fact that, without accounting for absorption 
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conditions, 𝑅𝑝  undergoes total reflection when the incident angle surpasses the 

Critical Angle, resulting in a value of 1, while 𝐴𝑝  is 0. Consequently, calculations 

cannot proceed, leading to an indeterminate result. The ultra-high enhancement factor 

observed above the critical angle is influenced by leakage caused by the refractive index 

of the material in the thin layer surpassing that of the incident medium. In any case, 

when the incident angle exceeds the critical angle, 𝐴𝑝  approaches infinity, 

contributing to the increase in 𝐴𝑝𝑑/𝐴𝑝. This underscores the fundamental reason for 

obtaining an enhanced spectrum when an optically dense medium is incident on an 

optically sparse medium. This phenomenon becomes more pronounced when the 

refractive index of SiO2 varies with wavenumber as showed in Fig. 5.23. 

In the second scenario, where the incident medium is optically sparse and the 

receiving medium is optically dense, it is noteworthy that there is no distinct critical 

angle, or it can be considered that the critical angle is infinitely close to 90°. 

Fig. 5.24 𝐴𝑝𝑑/𝐴𝑝 changing with wavenumber and incident angle (𝑛𝐴𝑖𝑟 = 1, Carbon is 

sample 1 from Chapter1). The difference is 𝑛𝑆𝑖𝑂2𝐶𝑎𝐹2
= 1.4(Left); 𝑛𝑆𝑖𝑂2𝐶𝑎𝐹2

changing 

with wavenumber (Right).  

As depicted in the Fig. 5.24, it is evident that there are some variations in 𝐴𝑝𝑑/𝐴𝑝 

near the Brewster angle. However, the overall change is relatively modest, and the 

enhancement likely remains within single-digit values. Therefore, in the context of 

surface enhancement, although there is a substantial enhancement near the Brewster 

Angle when altering the incident angle, a noteworthy aspect of this phenomenon is that, 

at the same incident angle near the Brewster Angle, both 𝐴𝑝𝑑 with a thin layer and 𝐴𝑝 

without a thin layer achieve a comparable degree of enhancement. Consequently, the 

final result of 𝐴𝑝𝑑/𝐴𝑝  does not exhibit significant variation, implying that, in this 

scenario, the enhancing effect of adding thin layers on 𝐴𝑝𝑑/𝐴𝑝 is not conspicuous. 
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Comparison of differences between enhancement between near Brewster Angle 

(𝜃𝐵) and near Critical Angle (𝜃𝑐) are showed in Table. 5.1. 

 

Table. 5.1 Differences enhancement between near Brewster Angle (𝜃𝐵 ) and near   

Critical Angle (𝜃𝑐) 

 

 

 

Property Enhancement Near Brewster Angle 
(𝜽𝑩) Enhancement Near Critical Angle (𝜽𝑪) 

Linear IR (1D IR) ╳ √ 

Nonlinear IR (2D IR) √ √ 

From Dense to Parse √ √ 

From Parse to Dense √ ╳ 

Enhancement 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 = −
1

𝑟(𝜔)
=

𝑆𝑟(𝜔)

𝑆𝑡(𝜔)
 𝑅𝐸𝑛ℎ𝑎𝑛𝑐𝑒 =

𝑆𝑑(𝜔)

𝑆(𝜔)
 

Nature The ratio of reflection to transmission 
spectrum 

Increase the ratio of before and after the 
substance 

Applicable scenarios 
Enhancement effects of different 

spectra of the same substance 

Enhancement effect of different 

substances at the same incident angle 

Maximum position 𝜃 is slightly higher than 𝜃𝐵 𝜃  is slightly higher than 𝜃𝐶  

Maximum reflection 

enhancement 
√ ╳ 

Maximum surface 

enhancement 
╳ √ 
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Conclusion 
Drawing upon Maxwell's equations, a series of theoretical propositions were 

formulated, and the ensuing calculations demonstrated consistency with experimental 

spectral data. In the context of ATR, calculations were conducted for scenarios where 

the refractive index of the mixture, either partially or entirely, surpassed the critical 

refractive index. This facilitated the computation of surface-enhanced, distorted, and 

perfect absorption spectra, driven by optical factors rather than intramolecular or 

intermolecular interactions. 

Initiating the exploration from the distorted spectrum, Snell's law was employed to 

elucidate the origins of distortion. The complex refractive index was derived from the 

absorption spectrum using Fresnel's law calculations. Combining these calculations, the 

developmental process of the distorted spectrum was well-simulated. Kramers-Kronig 

(KK) transformation was utilized to obtain the correction map for the purely distorted 

spectrum. However, this method proved inapplicable for spectra blending absorption 

and refraction, leading to the implementation of Inverse Fast Fourier Transformation 

(IFFT) and Fast Fourier Transformation (FFT) to obtain mixed distorted spectrum 

correction maps by combining time and frequency domains. 

Analysis of the corrected spectrum revealed a fallacy in perceiving the distorted 

spectrum as a red shift; instead, it exhibited a blue shift compared to the normal 

spectrum. The degree of peak blue shift was found to be proportional to the length of 

the twist. This groundwork laid the foundation for subsequent research and analysis, 

providing precise data and methods for researchers. 

Despite the complexity of calculations and interpretations integrating numerous 

optical backgrounds, such endeavors can be challenging for researchers lacking 

relevant background knowledge. In this context, where ATR distorted spectra are 

commonplace in experimental analysis, deep learning emerges as a promising solution. 

Deep learning, particularly Neural Networks, mimics the human's neural network to 

continuously learn and approximate real values. In spectral classification and distortion 

spectrum correction, these methods, akin to language translation, demonstrated 

effective results through label classification and automatic learning, eliminating the 

need for extensive physics and optics knowledge. The integration of complex 
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calculations into simulated spectra, coupled with depth learning methods, ensures 

calculated results align closely with reality, facilitating the distinction and correction of 

relevant spectra through optimal learning models. 

The practical application of these approaches involved simulations of distorted 

spectra using IFFT and FFT methods, followed by the superimposition of distorted 

baselines during experiments to obtain blended distorted spectra. Two distinct methods, 

Long Short-Term Memory (LSTM) and Transformer, were employed for spectral 

classification and correction, demonstrating close alignment with traditional methods 

but with increased speed and batch correction capabilities. 

An acknowledged limitation in this work is the scarcity of experimental data for 

deep learning. Future aspirations include obtaining more extensive experimental data 

to enhance the accuracy and generalizability of conclusions within the realm of deep 

learning algorithms and spectral analysis. 

At this juncture, our investigation into the realm of distorted spectra is essentially 

complete. However, a noteworthy revelation during our study is the frequent 

coexistence of distorted spectra with enhanced spectra. In the case of pure substances, 

the acquisition of corresponding surface-enhanced spectra is possible when the incident 

angle closely approaches the critical incident angle. Yet, the stringent conditions for 

obtaining this enhanced spectrum render it challenging to detect in experiments. (It is 

acknowledged that for single substances with varying shapes and sizes, corresponding 

differences in absorption spectrum values may arise, but this aspect is presently beyond 

the scope of our discussion). For mixtures, particularly solid-liquid combinations, the 

presence of a solid substance with a high refractive index allows for the acquisition of 

surface-enhanced spectra contingent upon factors such as quantity, shape, and thickness 

of the solid. 

We delve into two scenarios to elucidate this phenomenon. Firstly, presuming the 

refractive index of the solid material surpasses the critical refractive index, and the 

thickness is known and extremely thin, we employ multi-layer Fresnel's law to calculate 

the corresponding surface enhancement spectrum. In this context, the solid material 

may encompass multiple layers, notably applicable to substances with a negative real-

valued part of the complex refractive index, such as gold, platinum, and emerging 

semiconductors like graphene. The principle of surface-enhanced spectrum generation 
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is elucidated through configurations akin to Kretschmann and Otto, engendering 

surface plasmons. Secondly, when the solid material exists in particle form and is 

dispersed in a liquid, the simulation of corresponding surface enhancement spectra 

necessitates the creation of a model. Theoretical analysis, accounting for the thickness 

of the thin layer and incorporating conditions for surface plasmon generation, is 

combined with experimental results, exemplified by the enhanced spectrum of Pd for 

Rhodamine-6G. This integration of calculations with experiments not only validates the 

theoretical framework but also establishes a robust foundation for practical 

experimentation. 

The exploration of perfect absorption spectra emerges as an enticing avenue, yet 

due to time constraints, our current research cannot delve deeper into this subject. 

Therefore, we harbor hopes of conducting more comprehensive investigations in this 

field in the future. 

Next, the principle of 2D FT is elucidated, providing a foundation for 

understanding the mechanics of 2D IR spectroscopy. Subsequently, two pivotal 

methods within 2D IR spectroscopy are introduced. The first method, developed by 

Isao Noda, involves transforming multiple one-dimensional spectra and is reinterpreted 

here through the lens of the Hilbert transform. The second method involves spectra 

obtained via actual detection and 2D FT using nonlinear ultrafast laser techniques, with 

significant contributions from the research of Professor Peter Hamm and Professor 

Zanni. This section serves to establish a comprehensive understanding of the principles 

of 2DIR spectroscopy, which is crucial for the subsequent exploration of surface-

enhanced spectroscopy applications within this domain. 

Our research in ultrafast spectroscopy encompasses both the observation of 

distorted spectra in 2D IR spectroscopy, analogous to those seen in 1D IR spectroscopy, 

and the detection of surface-enhanced spectra akin to those observed in 1D 

spectroscopy. Additionally, our studies reveal a distinctive surface-enhanced spectrum 

near the Brewster angle, attributable to third-order nonlinear optical measurements in 

2D IR spectroscopy. This research further includes a comprehensive analysis and 

comparison of the fundamental nature of these phenomena. 

The synthesis of conclusions and phenomena from both two-dimensional and one-

dimensional spectra not only facilitates the generation of corresponding simulated 
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spectra through theoretical calculations but also engenders more compelling 

experimental results. This integration further allows for the unification of 1D and 2D 

spectra. Importantly, the marriage of two-dimensional spectral calculations with deep 

learning algorithms, potentially linked to image recognition, holds promise for 

expanding the domain of spectral learning and research. This implies that our research 

can extend beyond applications in natural language learning (NLP) models to shine in 

the field of image analysis and generation. 
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List of Symbols 
Symbol Meaning 

∇  three-dimensional gradient operator, del 

∇ · divergence operator 

𝛻 × curl operator 

    vector field 

�⃗�  electric field 

�⃗�  magnetic field 

�⃗⃗�  magnetizing field 

�⃗⃗�  displacement field 

𝜌𝑣 total electric charge density (total charge per unit volume)  

𝐽  total electric current density (total current per unit area) 

𝑖 , 𝑗 , �⃗�   direction vectors 

ε electric permittivity 

𝑡 time 

μ magnetic permeability 

𝜎 electrical conductivity 

ε0 vacuum permittivity ε0 = 8.8541878176 × 10−12𝐹/𝑚 

ε𝑟 relative permittivity 

�⃗�  polarization density 

𝜒𝑒  electric susceptibility of the medium 

μ the permeability(𝐻/𝑚) 

μ0 the vacuum permeability μ0 = 1.2566370614 × 10−6 𝐻/𝑚 

μ𝑟 the relative permeability 

𝑐 the speed of light in vacuum 𝑐 = 2.99792458 × 108  𝑚/𝑠 

𝑟  direction of the wave 

�⃗�  wave vector 

𝑘0
⃗⃗⃗⃗  the wave vector of light in vacuum. 

⍵ angular frequency (𝑟𝑎𝑑/𝑠) 

𝑓 frequency (𝐻𝑧) 
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𝑇 period (𝑠) 

𝑘0
⃗⃗⃗⃗  wave vector of light in vacuum 

𝑖 𝑖2 = −1 

�̂� complex refractive index 

𝑛 real part of refractive index 

𝑘 imaginary part of refractive index 

𝑟 reflection 

𝑡 transmission 

𝜃 incident angle 

𝑅 reflectance spectra 

𝐴 absorbance spectra 

𝑠 𝑠-polorized 

𝑝 𝑝-polorized 

𝜃𝑐 critical angle 

𝑑𝑝 penetration depth 

𝑣, 𝑓 frequency 

𝑛𝑐 critical refractive index 

𝑐𝑘 the amplitude 

𝜑𝑘 phase angle 

𝐴𝑘

𝜙𝑘
𝑃𝑆𝐷

(𝑣) the phase -resolved modulation spectrum 

𝜙𝑘
𝑃𝑆𝐷 phase angle with PSD 

𝐹 Fourier transform 

ℋ Hilbert transform 

𝐿 Laplace transform 

N  the number of atoms per unit volume 

𝑞  the charge of an electron 

𝑚 mass 

𝑚𝑒 mass of electron 

𝑝  the polarization 

⍵𝑝 the plasma frequency 

𝛾, 𝛾𝑗 , Γ damping constant 

𝑆𝑗 oscillator strength 
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𝑣𝑗 center frequency 

𝑑 thickness of the medium 

ε∞ constant offset 

𝑘𝑥 wave vector in 𝑥-direction 

𝑒𝐸𝐹 enhancement factor 

 𝐼𝐺𝐸𝐼𝑅𝐴 absorption peak intensity 

 𝐼0 absorption peak intensity of basis 

�̂� the quantum mechanical operator  

�̂� the molecule’s dipole 

�̂�0 the principal component 

|𝑛⟩ the molecular eigenstates 

|𝜓(𝑡)⟩ the state vector of the quantum system 

�̂�(𝑡) the Hamiltonian operator 

𝑐𝑛 the probability amplitude 

𝜌  density matrix (or density operator) 

𝑝𝑠  the associated eigenvalue 

|𝜓𝑠⟩  the eigenstate corresponding to the density operator 

ℏ reduced Planck constant ℏ = ℎ/2𝜋 = 1.054571800 ∗ 10−34 𝐽 · 𝑠 

�̂� the operator 

𝑊�̂�(𝑡) the perturbation Hamiltonian 

𝑐𝑛  the probability amplitude 

𝑃(𝑡) the macroscopic polarization 

𝑅(𝑡). the molecular response 

S signal 
𝐸𝑠𝑖𝑔 the electric field energy of the signal 

𝛤𝑓
˂𝑡˃ forget gate for 𝑡 step. 

𝜎 sigmoid function. 

𝑊𝑓 the forget gate weight. 

𝑥˂𝑡˃ input data of 𝑡 step. 

𝑎˂𝑡−1˃ the hidden state from the previous cell. 

𝑏𝑓 the forget gate bias. 

𝛤𝑢
˂𝑡˃ update gate for 𝑡 step. 
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𝑊𝑖 the update gate weight (not 𝑊𝑢 ). 

𝑊𝑦 the prediction weight. 

𝑏𝑦 the prediction bias. 

𝑏𝑖 the update gate bias (not 𝑏𝑢 ). 

�̂�˂𝑡˃ candidate value. 

𝑡𝑎𝑛ℎ the tanh function produces values between -1 and 1. 

𝑊𝑐 the candidate weight. 

𝑏𝑜 the candidate bias. 

𝑐˂𝑡˃ cell state for 𝑡 step. 

𝑐˂𝑡−1˃ cell state for 𝑡-1 step. 

𝛤𝑜
˂𝑡˃ output gate for 𝑡 step. 

𝑊𝑜 the output gate weight. 

𝑏𝑜 the output gate bias. 

𝑎˂𝑡˃ the hidden state. 

𝑦𝑝𝑟𝑒𝑑
˂𝑡˃  prediction for 𝑡 step. 

𝑚 the diffraction order 

Λ the grating period 
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